杨肖峰1, 李芹1,2, 杜雁霞1, 刘磊1, 桂业伟1
收稿日期:
2021-06-03
修回日期:
2021-06-28
发布日期:
2021-08-17
通讯作者:
杜雁霞
E-mail:yanxiadu@cardc.cn
基金资助:
YANG Xiaofeng1, LI Qin1,2, DU Yanxia1, LIU Lei1, GUI Yewei1
Received:
2021-06-03
Revised:
2021-06-28
Published:
2021-08-17
Supported by:
摘要: 随着未来临近空间高超声速飞行器高速度、长航时新需求的提出,飞行器高温流动与热防护系统相互作用凸显,引发极端力学、热学条件下气固界面多相催化等高温界面效应。回顾了高超声速飞行器中界面多相催化理论建模和数值研究历程,重点综述了界面多相催化的给定速率系数模型、含微细观特征的唯象模型、基于微观理论模拟的跨尺度模型的研究进展。总结了作者团队在飞行器界面多相催化效应建模、机理和应用相关方面的研究结果。结合未来飞行器减重、增程、保形的设计需求,进一步提出了国内后续研究的重点方向,以期支撑热防护系统轻量化、低冗余设计。
中图分类号:
杨肖峰, 李芹, 杜雁霞, 刘磊, 桂业伟. 高超声速飞行器界面多相催化数值研究进展[J]. 航空学报, 2021, 42(12): 625908-625908.
YANG Xiaofeng, LI Qin, DU Yanxia, LIU Lei, GUI Yewei. Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 625908-625908.
[1] 孟光, 周徐斌, 苗军. 航天重大工程中的力学问题[J]. 力学进展, 2016, 46:201606. MENG G, ZHOU X B, MIAO J. Mechanical problems in momentous projects of aerospace engineering[J]. Advances in Mechanics, 2016, 46:201606(in Chinese). [2] JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRe-5 flight test results[J]. Journal of Spacecraft and Rockets, 2015, 52(3):650-663. [3] CHEN F J, BERRY S A. HyBoLT flight experiment:NASA/TM-2010-216725[R]. Washington, D.C.:NASA, 2010. [4] BERTIN J J, CUMMINGS R M. Fifty years of hypersonics:Where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7):511-536. [5] SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics, 2020, 2:22. [6] 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6):1292-1310. YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1292-1310(in Chinese). [7] BHAT B N. Aerospace materials and applications[M]. Reston:AIAA, 2018. [8] RIVERS H K, GLASS D E. Advances in hot structure development[C]//Proceedings of the 5th European Workshop on Thermal Protection Systems and Hot Structures, 2006. [9] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402. [10] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese). [11] HERDRICH G, FERTIG M. Catalysis of metallic and ceramic TPS-materials[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7(ists26):49-58. [12] HERDRICH G, FERTIG M, LÖHLE S, et al. Oxidation behavior of siliconcarbide-based materials by using new probe techniques[J]. Journal of Spacecraft and Rockets, 2005, 42(5):817-824. [13] RIED R, GOODRICH W, LI C, et al. Space shuttle orbiter entry heating and TPS response:STS-1 predictions and flight data:19820015618[R]. Washington, D.C.:NASA, 1982. [14] VAßEN R, CERNUSCHI F, RIZZI G, et al. Recent activities in the field of thermal barrier coatings including burner rig testing in the European union[J]. Advanced Engineering Materials, 2008, 10(10):907-921. [15] CHAZOT O. Experimental studies on hypersonic stagnation point chemical environment[R]. Belgium:von Karman Institute for Fluid Dynamics, 2006. [16] KARL S, SCHRAMM J M, HANNEMANN K. High enthalpy cylinder flow in HEG:A basis for CFD validation:AIAA-2003-4252[R]. Reston:AIAA, 2003. [17] SCHRAMM J M, HANNEMANN K, BECK W, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG:AIAA-2002-2913[R]. Reston:AIAA, 2002. [18] MACLEAN M, WADHAMS T, HOLDEN M, et al. Investigation of blunt bodies with CO2 test gas including catalytic effects:AIAA-2005-4693[R]. Reston:AIAA, 2005. [19] MACLEAN M, HOLDEN M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2:AIAA-2006-0182[R]. Reston:AIAA, 2006. [20] AMARATUNGA S R, TUTTY O R, ROBERTS G T. High-speed flow with discontinuous surface catalysis[J]. Journal of Fluid Mechanics, 2000, 420:325-359. [21] WRIGHT M, EDQUIST K, TANG C, et al. A review of aerothermal modeling for Mars entry missions:AIAA-2010-0443[R]. Reston:AIAA, 2010. [22] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157. [23] 国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J]. 空气动力学学报, 2017, 35(4):496-503. GUO Y J, ZENG L, ZHANG H Y, et al. Investigation on aerothermodynamic environment and ablation which lead to HTV-2 second fight test failing[J]. Acta Aerodynamica Sinica, 2017, 35(4):496-503(in Chinese). [24] SCHMISSEUR J D. Hypersonics into the 21 st century:A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72:3-16. [25] LIU X, FURRER D, KOSTERS J, et al. Vision 2040:A roadmap for integrated, multiscale modeling and simulation of materials and systems:CR-2018-219771[R]. Washington, D.C.:NASA, 2018. [26] FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25(2):73-85. [27] SCALA S M. Hypersonic heat transfer to catalytic surfaces[J]. Journal of the Aerospace Sciences, 1958, 25(4):273-275. [28] BARBATO M, BRUNO C. Heterogeneous catalysis:Theory, models and applications[M]//Molecular Physics and Hypersonic Flows. Dordrecht:Springer, 1996:139-160. [29] SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4):281-349. [30] DUFFA G, VIGNOLES G L, GOYHÉNōCHE J M, et al. Ablation of carbon-based materials:Investigation of roughness set-up from heterogeneous reactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(16):3387-3401. [31] GE W, CHANG Q, LI C X, et al. Multiscale structures in particle-fluid systems:Characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198:198-223. [32] TONG Z X, HE Y L, TAO W Q. A review of current progress in multiscale simulations for fluid flow and heat transfer problems:The frameworks, coupling techniques and future perspectives[J]. International Journal of Heat and Mass Transfer, 2019, 137:1263-1289. [33] MARSCHALL J, MACLEAN M, NORMAN P E, et al. Surface chemistry in non-equilibrium flows[M]//Hypersonic Nonequilibrium Flows:Fundamentals and Recent Advances. Reston:AIAA, 2015:239-327. [34] BOWKER M. Heterogeneous catalysis:Fundamentals and applications[J]. Catalysis Letters, 2012, 142:1411. [35] 杨肖峰, 李芹, 杜雁霞, 等. 高焓气流下表面跨尺度催化传热过程的CFD/RMD耦合计算方法探究[C]//中国工程热物理学会2020年传热传质学术会议,2020. YANG X F, LI Q, DU Y X, et al. Investigation of CFD/RMD coupling computational method for surface cross-scale catalytic heat transfer in high-enthalpy flow[C]//2020 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics,2020(in Chinese). [36] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:AIAA, 2006. [37] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [38] CHEN Y K, HENLINE W D, STEWART D A, et al. Navier-Stokes solutions with surface catalysis for Martian atmospheric entry[J]. Journal of Spacecraft and Rockets, 1993, 30(1):32-42. [39] STEWART D. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles:NASA-TM-112206[R]. Washington, D.C.:NASA, 1997. [40] 丁明松, 董维中, 高铁锁, 等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3):121588. DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588(in Chinese). [41] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下C/SiC复合材料的催化性能[J]. 航空学报, 2018, 39(5):421696. LIU L P, WANG G L, WANG Y G, et al. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421696(in Chinese). [42] 苗文博, 程晓丽, 艾邦成, 等. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报, 2013, 34(3):442-446. MIAO W B, CHENG X L, AI B C, et al. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446(in Chinese). [43] 杨肖峰, 唐伟, 桂业伟, 等. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W, GUI Y W, et al. Hypersonic catalytic aeroheating characteristics for Mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese). [44] RAKICH J, STEWART D, LANFRANCO M. Results of a flight experiment on the catalytic efficiency of the Space Shuttle heat shield:AIAA-1982-0944[R]. Reston:AIAA, 1982. [45] MILLER J, TANNEHILL J, EDWARDS T, et al. Computation of hypersonic flows with finite-catalytic walls:AIAA-1994-2354[R]. Reston:AIAA, 1994. [46] KOVALEV V L, KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry (a review)[J]. Fluid Dynamics, 2005, 40(5):669-693. [47] SCOTT C. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation:AIAA-1980-1477[R]. Reston:AIAA, 1980. [48] SHINN J, MOSS J, SIMMONDS A. Viscous-shock-layer heating analysis for the shuttle windward-symmetry plane with surface finite catalytic recombination rates:AIAA-1982-0842[R]. Reston:AIAA, 1982. [49] GUPTA R N, MOSS J N, SIMMONDS A L, et al. Space Shuttle heating analysis with variation in angle of attack and catalycity[J]. Journal of Spacecraft and Rockets, 1984, 21(2):217-219. [50] ZOBY E, SIMMONDS A, GUPTA R. Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions:AIAA-1984-0224[R]. Reston:AIAA, 1984. [51] PAGNON D, AMORIM J, NAHORNY J, et al. On the use of actinometry to measure the dissociation in O2 DC glow discharges:Determination of the wall recombination probability[J]. Journal of Physics D:Applied Physics, 1995, 28(9):1856-1868. [52] BALAT-PICHELIN M, BADIE J M, BERJOAN R, et al. Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy[J]. Chemical Physics, 2003, 291(2):181-194. [53] PEJAKOVI AC'G D A, MARSCHALL J, DUAN L, et al. Nitric oxide production from surface recombination of oxygen and nitrogen atoms[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(2):178-186. [54] BRUNO C. Modelling catalytic recombination heating at hypersonic speeds:AIAA-1989-0309[R]. Reston:AIAA, 1989. [55] NASUTI F, BARBATO M, BRUNO C. Material-dependent catalytic recombination modeling for hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(1):131-136. [56] BARBATO M, REGGIANI S, BRUNO C, et al. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3):412-420. [57] KOVALEV V L, KOLESNIKOV A F, KRUPNOV A A, et al. Analysis of phenomenological models describing the catalytic properties of high-temperature reusable coatings[J]. Fluid Dynamics, 1996, 31(6):910-919. [58] CHOQUET I. A new approach to model and simulate numerically surface chemistry in rarefied flows[J]. Physics of Fluids, 1999, 11(6):1650-1661. [59] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston:AIAA, 2000. [60] YANO R, SUZUKI K. Kinetic description of finite-wall catalysis for monatomic molecular recombination[J]. Physics of Fluids, 2011, 23(11):117101. [61] BELLAS-CHATZIGEORGIS G, BARBANTE P F, MAGIN T E. Energy accommodation coefficient calculation methodology using state-to-state catalysis applied to hypersonic flows[J]. AIAA Journal, 2019, 58(1):278-290. [62] ALTMAN I. On energy accommodation coefficient of gas molecules on metal surface at high temperatures[J]. Surface Science, 2020, 698:121609. [63] CARLETON K L, MARINELLI W J. Spacecraft thermal energy accommodation from atomic recombination[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(4):650-655. [64] GIMELSHEIN S F, WYSONG I J. Gas-phase recombination effect on surface heating in nonequilibrium hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3):638-646. [65] SEWARD W A, JUMPER E J. Model for oxygen recombination on silicon-dioxide surfaces[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(3):284-291. [66] JUMPER E J, SEWARD W A. Model for oxygen recombination on reaction-cured glass[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(3):460-465. [67] JUMPER E, NEWMAN M, KITCHEN D, et al. Recombination of nitrogen on silica-based, thermal-protection-tile-like surfaces:AIAA-1993-0477[R]. Reston:AIAA, 1993. [68] BARBATO M, GIORDANO D, MUYLAERT J, et al. Comparison of catalytic wall conditions for hypersonic flow[J]. Journal of Spacecraft and Rockets, 1996, 33(5):620-627. [69] GORDIETS B, FERREIRA C M, NAHORNY J, et al. Surface kinetics of N and O atoms in discharges[J]. Journal of Physics D:Applied Physics, 1996, 29(4):1021-1031. [70] GORDIETS B F, FERREIRA C M. Self-consistent modeling of volume and surface processes in air plasma[J]. AIAA Journal, 1998, 36(9):1643-1651. [71] ARMENISE I, CAPITELLI M, GORSE C, et al. Nonequilibrium vibrational kinetics of an O2/O mixture hitting a catalytic surface[J]. Journal of Spacecraft and Rockets, 2000, 37(3):318-323. [72] ARMENISE I, CAPITELLI M, GORSE C. Nonequilibrium vibrational kinetics of air hitting a catalytic SiO2 surface[J]. Journal of Spacecraft and Rockets, 2001, 38(4):482-487. [73] ARMENISE I, BARBATO M, CAPITELLI M, et al. Surface recombination coefficients and boundary-layer hypersonic-flow calculations on different surfaces[J]. Journal of Spacecraft and Rockets, 2004, 41(2):310-313. [74] ARMENISE I, BARBATO M, CAPITELLI M, et al. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3):465-476. [75] GUERRA V. Theoretical investigation of the influence of the wall temperature on the probability for surface atomic recombination of a single species[J]. Japanese Journal of Applied Physics, 2006, 45(10B):8200-8203. [76] GUERRA V. Analytical model of heterogeneous atomic recombination on silicalike surfaces[J]. IEEE Transactions on Plasma Science, 2007, 35(5):1397-1412. [77] 李芹. 飞行器表面多相催化效应的唯象建模与气动热数值模拟研究[D]. 上海:上海交通大学, 2021. LI Q. Phenomenological modeling of heterogeneous catalysis and numerical simulation of aerodynamic heating on aircraft surface[D]. Shanghai:Shanghai Jiao Tong University, 2021(in Chinese). [78] 李芹, 杨肖峰, 董威, 等. 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021, 55(5):52-61. LI Q, YANG X F, DONG W, et al. Numerical simulation on influence of adsorption on surface catalysis process of hypersonic vehicle[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5):52-61(in Chinese). [79] 李芹, 杨肖峰, 杜雁霞, 等. 基于材料催化属性的高超声速飞行器表面多相催化建模[C]//第十九届全国高超声速飞行器气动力/热学术交流会, 2020. LI Q, YANG X F, DU Y X, et al. Modeling of surface heterogeneous catalysis of hypersonic vehicle based on material catalytic properties[C]//The 19th National Symposium on Aerodynamics/Aerothermodynamics of Hypersonic Vehicles, 2020(in Chinese). [80] VIGNOLES G, LACHAUD J, ASPA Y. Roughness evolution in ablation of carbon-based materials:Multi-scale modelling and material analysis[C]//Proceedings of the Thermal Protection Systems and Hot Structures, 2006. [81] RAOUFI D, KIASATPOUR A, FALLAH H R, et al. Surface characterization and microstructure of ITO thin films at different annealing temperatures[J]. Applied Surface Science, 2007, 253(23):9085-9090. [82] PARK C. Numerical implementation of surface catalysis, reaction, and sublimation:RTO-EN-AVT-142[R]. Neuilly sur Seine:NATO Research and Technology Organization, 2007. [83] KANDASAMY R, ABD W, KHAMIS A. Effects of chemical reaction, heat and mass transfer on boundary layer flow over a porous wedge with heat radiation in the presence of suction or injection[J]. Theoretical and Applied Mechanics, 2006, 33(2):123-148. [84] THOEMEL J, CHAZOT O. Surface catalysis of rough surfaces:AIAA-2009-3931[R]. Reston:AIAA, 2009. [85] MULLENIX N, POVITSKY A. Hypersonic ablation of graphite thermal protection systems with surface defects[J]. Journal of Spacecraft and Rockets, 2016, 53(5):912-929. [86] HERDRICH G, FERTIG M, PETKOW D, et al. Experimental and numerical techniques to assess catalysis[J]. Progress in Aerospace Sciences, 2012, 48-49:27-41. [87] KEIL F J. Multiscale modelling in computational heterogeneous catalysis[M]//Multiscale Molecular Methods in Applied Chemistry. Berlin, Heidelberg:Springer, 2012:69-107. [88] SALCICCIOLI M, STAMATAKIS M, CARATZOULAS S, et al. A review of multiscale modeling of metal-catalyzed reactions:Mechanism development for complexity and emergent behavior[J]. Chemical Engineering Science, 2011, 66(19):4319-4355. [89] CACCIATORE M, RUTIGLIANO M, BILLING G. Energy flows, recombination coefficients and dynamics for oxygen recombination on silica surfaces:AIAA-1998-2843[R]. Reston:AIAA, 1998. [90] RUTIGLIANO M, PIERETTI A, CACCIATORE M, et al. N atoms recombination on a silica surface:A global theoretical approach[J]. Surface Science, 2006, 600(18):4239-4246. [91] CACCIATORE M, RUTIGLIANO M. Molecular dynamics studies on fundamental molecular surface processes[J]. AIP Conference Proceedings, 2011, 1333:433-440. [92] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows:AIAA-2011-3644[R]. Reston:AIAA, 2011. [93] NORMAN P, SCHWARTZENTRUBER T. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows:Part II:AIAA-2012-3097[R]. Reston:AIAA, 2012. [94] NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. Modeling air-SiO2 surface catalysis under hypersonic conditions with ReaxFF molecular dynamics:AIAA-2010-4320[R]. Reston:AIAA, 2010. [95] LI K, LIU J, LIU W Q. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2015, 28(5):1355-1361. [96] BUCHACHENKO A A, KOVALEV V L, KRUPNOV A A. Closed model of oxygen recombination on an Al2O3 surface[J]. Russian Journal of Physical Chemistry B, 2013, 7(1):88-95. [97] BEDRA L, RUTIGLIANO M, BALAT-PICHELIN M, et al. Atomic oxygen recombination on quartz at high temperature:Experiments and molecular dynamics simulation[J]. Langmuir, 2006, 22(17):7208-7216. [98] GUERRA V, LOUREIRO J. Dynamical Monte Carlo simulation of surface atomic recombination[J]. Plasma Sources Science and Technology, 2004, 13(1):85-94. [99] THOEMEL J, LUKKIEN J, CHAZOT O. A multiscale approach for building a mechanism based catalysis model for high enthalpy carbon dioxide flow:AIAA-2007-4399[R]. Reston:AIAA, 2007. [100] SHIOZAKI S, SAKIYAMA Y, TAKAGI S, et al. Multiscale analysis of heterogeneous catalysis on a silica surface:AIAA-2008-1250[R]. Reston:AIAA, 2008. [101] BRUIX A, MARGRAF J T, ANDERSEN M, et al. First-principles-based multiscale modelling of heterogeneous catalysis[J]. Nature Catalysis, 2019, 2(8):659-670. [102] MARINOV D, TEIXEIRA C, GUERRA V. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions[J]. Plasma Processes and Polymers, 2017, 14(1-2):1600175. [103] 李芹, 杨肖峰, 杜雁霞, 等. 离解氧原子在硅基防热材料表面催化复合过程的KMC模拟[C]//中国工程热物理学会2021年传热传质学术会议, 2021. LI Q, YANG X F, DU Y X, et al. KMC simulation of recombination of dissociated oxygen atoms on silica based thermal protection materials[C]//2021 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics, 2021(in Chinese). [104] RUTIGLIANO M, ZAZZA C, SANNA N, et al. Oxygen adsorption on β-cristobalite polymorph:Ab initio modeling and semiclassical time-dependent dynamics[J]. The Journal of Physical Chemistry A, 2009, 113(52):15366-15375. [105] ZAZZA C, RUTIGLIANO M, SANNA N, et al. Oxygen adsorption on β-quartz model surfaces:Some insights from density functional theory calculations and semiclassical time-dependent dynamics[J]. The Journal of Physical Chemistry A, 2012, 116(9):1975-1983. [106] BUCHACHENKO A A, KROUPNOV A A, KOVALEV V L. First-principle study of atomic oxygen and nitrogen adsorption on (111) β-cristobalite as a model of thermal protection coverage[J]. Acta Astronautica, 2014, 100:40-46. [107] MEANA-PA AN~U EDA R, PAUKKU Y, DUANMU K N, et al. Atomic oxygen recombination at surface defects on reconstructed (0001) α-quartz exposed to atomic and molecular oxygen[J]. The Journal of Physical Chemistry C, 2015, 119(17):9287-9301. [108] DEUSHI F, ISHIKAWA A, NAKAI H. Density functional theory analysis of elementary reactions in NOx reduction on Rh surfaces and Rh clusters[J]. The Journal of Physical Chemistry C, 2017, 121(28):15272-81. [109] ARASA C, GAMALLO P, SAYÓS R. Adsorption of atomic oxygen and nitrogen at beta-cristobalite (100):A density functional theory study[J]. The Journal of Physical Chemistry B, 2005, 109(31):14954-14964. [110] KULKARNI A D, TRUHLAR D G, GOVERAPET SRINIVASAN S, et al. Oxygen interactions with silica surfaces:Coupled cluster and density functional investigation and the development of a new ReaxFF potential[J]. The Journal of Physical Chemistry C, 2013, 117(1):258-269. [111] KARSTEN R. Ab initio thermodynamics and first-principles microkinetics for surface catalysis[J]. Catalysis Letters, 2016, 146(3):541-63. [112] MACLEAN M, MARSCHALL J, DRIVER D. Finite-rate surface chemistry model, II:Coupling to viscous navier-stokes code:AIAA-2011-3784[R]. Reston:AIAA, 2011. [113] MARSCHALL J, MACLEAN M. Finite-rate surface chemistry model, I:Formulation and reaction system examples:AIAA-2011-3783[R]. Reston:AIAA, 2011. [114] CHOI H S, KIM K H, HONG K H, et al. Multi-scale modeling of processing of carbon nanotubes[C]//Proceedings of the NSTI Nanotechnology Conference, 2005. [115] MILOS F S, RASKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34. [116] CHEN Y K, HENLINE W D, TAUBER M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230. [117] MILOS F S, CHEN Y K, CONGDON W M, et al. Mars pathfinder entry temperature data, aerothermal heating, and heatshield material response[J]. Journal of Spacecraft and Rockets, 1999, 36(3):380-391. [118] JOSHI H, AGARWAL A, PURANIK B, et al. A hybrid FVM-LBM method for single and multi-fluid compressible flow problems[J]. International Journal for Numerical Methods in Fluids, 2010, 62(4):403-427. [119] SUN X W, YANG H B, MI T. Heat transfer and ablation prediction of carbon/carbon composites in a hypersonic environment using fluid-thermal-ablation multiphysical coupling[J]. International Journal of Aerospace Engineering, 2020, 2020:9232684. [120] LIU L, DAI G Y, ZENG L, et al. Experimental model design and preliminary numerical verification of fluid-thermal-structural coupling problem[J]. AIAA Journal, 2019, 57(4):1715-1724. [121] MARTIN A, BOYD I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation[J]. Journal of Spacecraft and Rockets, 2015, 52(1):89-104. [122] TABIEI A, SOCKALINGAM S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2012, 25(2):273-281. [123] YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3):687-697. [124] YANG X F, DU Y X, LIU S S, et al. Coupled heat transfer characteristics on gas-solid reacting interface in carbon-oxygen dissociating environment for spacecraft entry flow[J]. Journal of Thermal Science and Technology, 2020, 15(2):JTST0020. [125] YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453. [126] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):114702. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):114702(in Chinese). [127] 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4):641-650(in Chinese). [128] 桂业伟, 唐伟, 杜雁霞. 临近空间高超声速飞行器热安全[M]. 北京:国防工业出版社, 2019. GUI Y W, TANG W, DU Y X. Thermal safety issues of near-space hypersonic vehicles[M]. Beijing:National Defense Industry Press, 2019(in Chinese). [129] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):20844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):20844(in Chinese). [130] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059. [131] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4):201-209. [132] 杨肖峰. 火星进入器高超声速气动加热与耦合热效应研究[D]. 绵阳:中国空气动力研究与发展中心, 2017. YANG X F. Hypersonic aerodynamic heating characteristics and coupling thermal effects for Mars entry vehicles[D]. Mianyang:China Aerodynamics Research and Development Center, 2017(in Chinese). [133] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12):2461-2465. YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12):2461-2465(in Chinese). [134] YANG X F, LIU L, DAI G Y, et al. Trajectory-based fluid-thermal-structural coupled analysis for Mars entry capsule:AIAA-2017-2168[R]. Reston:AIAA, 2017. [135] YANG X F, TANG W, GUI Y W, et al. Integrated analysis of hypersonic aerothermodynamics and thermal response for Mars entry vehicles along the trajectory[C]//Proceedings of the 68th International Astronautical Congress, 2017. [136] 杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学:技术科学, 2018, 48(9):939-949. YANG X F, GUI Y W, LIU L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries[J]. Scientia Sinica (Technologica), 2018, 48(9):939-949(in Chinese). [137] YANG X F, GUI Y W, TANG W, et al. Thermochemical behavior and heat transfer in hypersonic thermal boundary layer with high-enthalpy dissociated carbon-oxygen gas mixture[C]//Proceedings of the 16th International Heat Transfer Conference, 2018. [138] 杨肖峰, 桂业伟, 唐伟, 等. 高温碳氧环境近壁热化学行为及催化特性模拟[J]. 工程热物理学报, 2018, 39(10):2244-2250. YANG X F, GUI Y W, TANG W, et al. Numerical simulation of catalysis characteristics and near-wall thermochemical behavior in high-temperature carbon-oxygen gas mixture[J]. Journal of Engineering Thermophysics, 2018, 39(10):2244-2250(in Chinese). [139] YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869. [140] 杨肖峰, 桂业伟, 李伟斌, 等. 高温碳氧环境壁面碳基材料烧蚀特性数值模拟和参数化分析[C]//中国工程热物理学会2018年传热传质学术会议, 2018. YANG X F, GUI Y W, LI W B, et al. Numerical simulation and parametrical analysis of ablation characteristics on carbon based materials in high-temperature carbon-oxygen environment[C]//2018 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics, 2018(in Chinese). [141] BOSE D, WRIGHT M J, PALMER G E. Uncertainty analysis of laminar aeroheating predictions for Mars entries[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4):652-662. [142] 杨肖峰, 桂业伟, 邱波, 等. 高焓CO2气流壁面两步催化机制对非平衡气动加热影响的数值模拟[J]. 国防科技大学学报, 2020, 42(1):108-116. YANG X F, GUI Y W, QIU B, et al. Numerical investigation on influence of surface two-step catalytic mechanism on non-equilibrium aerodynamic heating for high-enthalpy CO2 flow[J]. Journal of National University of Defense Technology, 2020, 42(1):108-116(in Chinese). [143] HANQUIST K M, BOYD I D. Plasma assisted cooling of hot surfaces on hypersonic vehicles[J]. Frontiers in Physics, 2019, 7:9. [144] LI Q, YANG X F, DU Y X, et al. The influence of metal material properties on heat and mass transfer into thermal protection surface with phenomenological catalytic model[C]//The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021. [145] YANG X F, LI Q, XIAO G, et al. Coupling flow and heat transfer physics of catalysis-involved gas/material interaction for thermal protection coatings of high-speed spacecraft[C]//The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021. [146] 唐伟, 杨肖峰, 桂业伟, 等. 火星进入器高超声速气动力/热研究综述[J]. 宇航学报, 2017, 38(3):230-239. TANG W, YANG X F, GUI Y W, et al. Review of hypersonic aerodynamics and aerothermodynamics for Mars entries[J]. Journal of Astronautics, 2017, 38(3):230-239(in Chinese). [147] 杨肖峰, 唐伟, 张昊元, 等. 火星进入器高超声速化学非平衡特性数值计算研究[J]. 载人航天, 2016, 22(6):694-699. YANG X F, TANG W, ZHANG H Y, et al. Numerical calculation of hypersonic chemical non-equilibrium characteristics for Mars entry capsule[J]. Manned Spaceflight, 2016, 22(6):694-699(in Chinese). [148] YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103:168-175. [149] 杨肖峰, 唐伟, 桂业伟. MSL火星探测器高超声速流场预测及气动性分析[J]. 宇航学报, 2015, 36(4):383-389. YANG X F, TANG W, GUI Y W. Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J]. Journal of Astronautics, 2015, 36(4):383-389(in Chinese). [150] 杨肖峰, 国义军, 唐伟, 等. 进入火星大气的高温真实气体效应与气动加热研究[J]. 宇航学报, 2018, 39(9):960-968. YANG X F, GUO Y J, TANG W, et al. High-temperature real-gas effects and aerodynamic heating for capsules entering Martian atmosphere[J]. Journal of Astronautics, 2018, 39(9):960-968(in Chinese). [151] 杨肖峰, 肖光明, 桂业伟, 等. 考虑非平衡效应的对流换热特性耦合模拟及热壁修正新思路[J]. 化工学报, 2020, 71(S2):152-160. YANG X F, XIAO G M, GUI Y W, et al. Coupling simulation of convective heat transfer characteristics and new idea for hot-wall correction considering non-equilibrium effects[J]. CIESC Journal, 2020, 71(S2):152-160(in Chinese). [152] YANG X F, XIAO G M, LIU L, et al. Wall temperature correlation for convective heating prediction of aircraft heat shield in high-enthalpy and chemically reacting flow[J]. Journal of Physics:Conference Series, 2021, 1786(1):012028. |
[1] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[2] | 郑建成, 曲智国, 谭贤四, 李志淮, 朱刚, 李陆军, 刘伟. 基于责任区划分的雷达网探测高超声速目标资源管理[J]. 航空学报, 2024, 45(8): 329022-329022. |
[3] | 戴今钊, 陈海昕. 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024, 45(6): 628942-628942. |
[4] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[5] | 杨博, 于贺, 樊子辰. 微观能量分析气动光学效应时变误差的方法[J]. 航空学报, 2024, 45(4): 128703-128703. |
[6] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[7] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[8] | 熊有德, 李创创, 张振辉, 吴杰. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024, 45(10): 129042-129042. |
[9] | 陆凤霞, 韦坤, 王春雷, 鲍和云, 朱如鹏. 直升机中减三相流金属屑末可达性[J]. 航空学报, 2024, 45(1): 128524-128524. |
[10] | 倪炜霖, 王永海, 徐聪, 赤丰华, 梁海朝. 基于强化学习的高超飞行器协同博弈制导方法[J]. 航空学报, 2023, 44(S2): 729400-729400. |
[11] | 于哲峰, 梁世昌, 石卫波, 田得阳, 石安华, 廖东骏, 杨鹰. 类HTV⁃2飞行器光电特性的分析评估技术[J]. 航空学报, 2023, 44(S2): 729465-729465. |
[12] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[13] | 任炯, 王刚, 胡国栋, 石晓露. 自适应Walsh函数有限体积方法[J]. 航空学报, 2023, 44(8): 127444-127444. |
[14] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[15] | 常思源, 肖尧, 李广利, 田中伟, 张凯凯, 崔凯. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349-127349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学