航空学报 > 2021, Vol. 42 Issue (12): 625908-625908   doi: 10.7527/S1000-6893.2021.25908

多相流与反应流的机理、模型及其调控技术专栏

高超声速飞行器界面多相催化数值研究进展

杨肖峰1, 李芹1,2, 杜雁霞1, 刘磊1, 桂业伟1   

  1. 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 上海交通大学 机械与动力工程学院, 上海 200240
  • 收稿日期:2021-06-03 修回日期:2021-06-28 发布日期:2021-08-17
  • 通讯作者: 杜雁霞 E-mail:yanxiadu@cardc.cn
  • 基金资助:
    国家重点研发计划(2019YFA0405202);国家自然科学基金(12072361,92052301)

Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles

YANG Xiaofeng1, LI Qin1,2, DU Yanxia1, LIU Lei1, GUI Yewei1   

  1. 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-06-03 Revised:2021-06-28 Published:2021-08-17
  • Supported by:
    National Key R&D Program of China (2019YFA0405202); National Natural Science Foundation of China (12072361, 92052301)

摘要: 随着未来临近空间高超声速飞行器高速度、长航时新需求的提出,飞行器高温流动与热防护系统相互作用凸显,引发极端力学、热学条件下气固界面多相催化等高温界面效应。回顾了高超声速飞行器中界面多相催化理论建模和数值研究历程,重点综述了界面多相催化的给定速率系数模型、含微细观特征的唯象模型、基于微观理论模拟的跨尺度模型的研究进展。总结了作者团队在飞行器界面多相催化效应建模、机理和应用相关方面的研究结果。结合未来飞行器减重、增程、保形的设计需求,进一步提出了国内后续研究的重点方向,以期支撑热防护系统轻量化、低冗余设计。

关键词: 高超声速, 高温界面效应, 多相催化, 热防护系统, 计算流体力学, 气动加热, 综合热效应

Abstract: With the new demand for high speed and long endurance of future near-space hypersonic vehicle, the interaction between high-temperature flow and thermal protection system of near-space hypersonic vehicles is prominent under extreme mechanical and thermal conditions, causing such high-temperature interface effects as heterogeneous catalysis at the gas-solid interface. The theoretical modeling and numerical research history of interface heterogeneous catalysis in hypersonic vehicles are recalled. For interface heterogeneous catalysis modeling, the specific rate efficiency model, the phenomenological model with micro- or meso-scale properties, and the cross-scale model based on microscopic theoretical simulation are reviewed in details. The research progress of modeling, mechanism and application related with the interface heterogeneous catalysis effect in the authors' team are summarized. Focusing on the future hypersonic vehicle design requirements for weight reduction, range extension, and conformal shape, the key directions of follow-up research are further proposed to support the lightweight and low-redundancy design of thermal protection systems.

Key words: hypersonic, high-temperature interface effects, heterogeneous catalysis, thermal protection system, computational fluid dynamics, aerodynamic heating, combined thermal phenomena

中图分类号: