航空学报 > 2021, Vol. 42 Issue (8): 525773-525773   doi: 10.7527/S1000-6893.2021.25773

高超声速全动翼面全时域耦合分析方法及应用

沈恩楠1, 郭同庆2, 吴江鹏1, 胡家亮1, 张桂江1   

  1. 1. 航空工业沈阳飞机设计研究所, 沈阳 110035;
    2. 南京航空航天大学 航空学院, 南京 210016
  • 收稿日期:2021-04-18 修回日期:2021-05-08 发布日期:2021-05-21
  • 通讯作者: 沈恩楠 E-mail:709144198@qq.com
  • 基金资助:
    沈阳飞机设计研究所博士创新基金(SBJ-004)

Full-time coupling method and application of a hypersonic all-movable wing

SHEN Ennan1, GUO Tongqing2, WU Jiangpeng1, HU Jialiang1, ZHANG Guijiang1   

  1. 1. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2021-04-18 Revised:2021-05-08 Published:2021-05-21
  • Supported by:
    Ph.D. Innovation Foundation of Shenyang Aircraft Design and Research Institute(SBJ-004)

摘要: 在流场-结构温度场同步计算方法的基础上,建立了多物理场全时域耦合分析方法,将方法应用于沿轨道运动的高超声速全动翼面热气动弹性稳定性分析。采用基于有限体积模型的CFD同步计算方法求解高超声速流场和结构温度场,建立映射关系实现结构有限元模型气动载荷加载和温度场赋值。采用移动坐标系和动网格相结合的方式描述变速度飞行和翼面偏转过程。通过坐标系变换将翼面偏转过程和振动过程的网格变形量叠加,考虑翼面振动和偏转的耦合非定常效应。针对沿轨道运动的高超声速飞行器,建立了同步计算方法与全时域耦合分析方法相结合的热气动弹性稳定性分析流程。研究发现,与同步计算方法相比,全时域耦合分析方法能够模拟结构振动对流场和结构温度场的影响,计算得到的监测点热流密度波动幅值占热流峰值的10%左右,而温度变化并不明显,相比于刚体模型,监测点温度只下降了0.3%左右。全时域耦合热气动弹性分析方法得到的颤振临界点在4-5号状态点之间,颤振形式为铰链扭转模态与一阶弯曲模态的耦合颤振,与"冻结"模态的热颤振方法结果一致。

关键词: 高超声速, 全动翼面, 全时域, 热气动弹性, 非定常, 颤振

Abstract: Based on the synchronous method of flow-structure temperature field, a multi field full-time coupling method is established for the aerothermoelastic stability and transient response analysis of a hypersonic all-movable wing along the trajectory. The aerothermal synchronization algorithm is used to simulate the hypersonic flow and the structural temperature field. The interpolation methods of aerodynamic and the structure temperature field are established. The non-inertial frame of reference describing the attitude, and the dynamic grids methods describing the wing vibration are superimposed by coordinate transformation. The coupling unsteady effect of the attitude and vibration of the all-movable wing is considered. Finally, an aerothermoelastic stability analysis method combining synchronization algorithm with full-time coupling method is established. The present method is applied to the thermal flutter prediction and transient response analysis of a hypersonic all-movable wing operating along a given trajectory. It is found that due to the influence of structural vibration, fluctuation amplitude of heat flux at the monitoring point accounts for about 10% of the peak, while temperature decreased about 0.3%. A coupled bending-torsion flutter is obtained by the full-time coupling method is between the 4-5 trajectory state points, which is consistent with the results of the "modal freezing" thermal flutter method.

Key words: hypersonic, all-movable wing, full-time coupling, aerothermoelastic, unsteady, flutter

中图分类号: