航空学报 > 2021, Vol. 42 Issue (8): 525771-525771   doi: 10.7527/S1000-6893.2021.25771

禁飞区影响下的空天飞机可达区域计算方法

章吉力1, 周大鹏2, 杨大鹏2, 刘然2, 刘凯1   

  1. 1. 大连理工大学 航空航天学院, 大连 116024;
    2. 航空工业沈阳飞机设计研究所, 沈阳 110035
  • 收稿日期:2021-04-15 修回日期:2021-05-08 发布日期:2021-05-21
  • 通讯作者: 刘凯 E-mail:carsonliu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(61603363);航空科学基金(2019ZC063001)

Computation method for reachable domain of aerospace plane under the influence of no-fly zone

ZHANG Jili1, ZHOU Dapeng2, YANG Dapeng2, LIU Ran2, LIU Kai1   

  1. 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
    2. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
  • Received:2021-04-15 Revised:2021-05-08 Published:2021-05-21
  • Supported by:
    National Natural Science Foundation of China (61603363);Aeronautical Science Foundation of China (2019ZC063001)

摘要: 针对禁飞区影响空天飞机再入可达区域问题,基于极限绕飞轨迹提出一种不限禁飞区位置的可达区域求解方法。首先,考虑空天飞机规避禁飞区后的剩余飞行能力评估,从极限绕飞轨迹与禁飞区的切点出发,提出绕过禁飞区后的子可达区域计算方法,在此基础上获得禁飞区影响下的可达区域和不可达区域的边界。然后,考虑禁飞区在经度/纬度剖面内可能出现的位置,分类讨论不同情形并给出对应子区域的求解算法,使用射线法判定目标点是否位于可达区域内,并应用分段预测校正制导方法实现面向可行目标点的导引。最后,在仿真中,给出了对经度/纬度剖面内散布的圆形禁飞区分类结果,并针对每一分类的禁飞区开展了可达区域求解计算分析。仿真结果表明,对不同种类的禁飞区情况,均能稳定实现可达区域求解,同时对于可达区域以内的目标点,通过应用分段预测校正方法可以满足再入制导精度要求。

关键词: 空天飞机, 禁飞区, 规避制导, 可达区域, 预测校正

Abstract: The no-fly zone influences the reachable domain of the aerospace plane in the reentry phase. An ultimate circumnavigation based method is proposed to obtain the reachable area no matter where the no-fly zone is. First, considering the residual flight capability of the aerospace plane after avoidance of the no-fly zone, the sub-reachable domain of the plane is derived from the tangent point between the ultimate circumnavigation trajectory and the no-fly zone. On this basis, the boundary of the reachable domain and the unreachable domain is obtained. Then, classifying and solving algorithms for the possible positions of the no-fly zone within the longitude-latitude profile are given to acquire the sub-reachable domains in different situations. The ray method is used to judge whether the target point is located in the reachable domain. The piecewise predictor-corrector guidance method is applied to realize the feasible target point. Finally, classification results of circular no-fly zones dispersed in the longitude/latitude profile are given in simulation. The influenced reachable domain for each class is also obtained. Simulation results show that regardless of the position of the no-fly zone, the proposed method has good stability in terms of obtaining the reachable domain at any situation. For the target points within the reachable domain, the precision requirement can be satisfied by using the piecewise predictor-corrector guidance method.

Key words: aerospace plane, no-fly zone, avoid guidance, reachable domain, predictor-corrector

中图分类号: