[1] LAZZERI L, MARIANI U. Application of damage tolerance principles to the design of helicopters[J]. International Journal of Fatigue, 2009, 31(6): 1039-1045. [2] XIONG J J, SHENOI R A. General aspects on structural integrity[J]. Chinese Journal of Aeronautics, 2019, 32(1): 114-132. [3] KPENYIGBA K M, JANKOWIAK T, RUSINEK A, et al. Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation[J]. Thin-Walled Structures, 2013, 65: 93-104. [4] BABAEI H, DARVIZEH A. Analytical study of plastic deformation of clamped circular plates subjected to impulsive loading[J]. Journal of Mechanics of Materials and Structures, 2012, 7(4): 309-322. [5] JONES N. Impact loading of ductile rectangular plates[J]. Thin-Walled Structures, 2012, 50(1): 68-75. [6] MOHOTTI D, ALI M, NGO T, et al. Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts[J]. Materials & Design, 2013, 50: 413-426. [7] JONES N. Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings[J]. International Journal of Impact Engineering, 2014, 74: 3-15. [8] MIRZABABAIE MOSTOFI T, BABAEI H, ALITAVOLI M, et al. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile[J]. Thin-Walled Structures, 2017, 112: 118-124. [9] BAI J B, XIONG J J, SHENOI A R, et al. An analytical model for predicting permanent plastic deflection and strain distributions in aluminium-alloy plates under low velocity impact loading[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(16): 2861-2872. [10] LANG N C, KWON Y W. Investigation of the effect of metallic fuselage dents on compressive failure loads[J]. Journal of Aircraft, 2007, 44(6): 2026-2033. [11] RAVIPRAKASH A V, PRABU B, ALAGUMURTHI N. Ultimate strength of a square plate with a longitudinal/transverse dent under axial compression[J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2377-2384. [12] PAIK J K, LEE J M, LEE D H. Ultimate strength of dented steel plates under axial compressive loads[J]. International Journal of Mechanical Sciences, 2003, 45(3): 433-448. [13] XU M C, GUEDES SOARES C. Assessment of residual ultimate strength for wide dented stiffened panels subjected to compressive loads[J]. Engineering Structures, 2013, 49: 316-328. [14] RAVIPRAKASH A V, PRABU B, ALAGUMURTHI N. Effect of size and orientation of a centrally located dent on the ultimate strength of a thin square steel plate under axial compression[J]. International Journal of Steel Structures, 2012, 12(1): 47-58. [15] LI Z G, ZHANG M Y, LIU F, et al. Influence of dent on residual ultimate strength of 2024-T3 aluminum alloy plate under axial compression[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3084-3094. [16] RAVIPRAKASH A V, PRABU B, ALAGUMURTHI N. Residual ultimate compressive strength of dented square plates[J]. Thin-Walled Structures, 2012, 58: 32-39. [17] PAIK J K. Ultimate strength of perforated steel plates under edge shear loading[J]. Thin-Walled Structures, 2007, 45(3): 301-306. [18] NOWELL D. Prediction of fatigue performance in gas turbine blades after foreign object damage[J]. International Journal of Fatigue, 2003, 25(9-11): 963-969. [19] RUSCHAU J J, NICHOLAS T, THOMPSON S R. Influence of foreign object damage(FOD) on the fatigue life of simulated Ti-6Al-4 V airfoils[J]. International Journal of Impact Engineering, 2001, 25(3): 233-250. [20] HARITOS G K, NICHOLAS T, LANNING D B. Notch size effects in HCF behavior of Ti-6Al-4V[J]. International Journal of Fatigue, 1999, 21(7): 643-652. [21] ZHANG X, CHAN B, LAMA S, et al. Influence of impact dents on the fatigue strength of aluminium alloy friction stir welds[J]. Procedia Engineering, 2010, 2(1): 1691-1700. [22] LI Z G, FENG R X, WANG Y, et al. Experimental study on the effect of dents induced by impact on the fatigue life of 2024-T3 aluminum alloy plate[J]. Engineering Structures, 2017, 137: 236-244. [23] HAGIWARA N, OGUCHI N. Fatigue behavior of line pipes subjected to severe mechanical damage[J]. Journal of Pressure Vessel Technology, 1999, 121(4): 369-374. [24] THOMPSON S R, RUSCHAU J J, NICHOLAS T. Influence of residual stresses on high cycle fatigue strength of Ti-6Al-4V subjected to foreign object damage[J]. International Journal of Fatigue, 2001, 23: 405-412. [25] PETERS J O, RITCHIE R O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V[J]. Engineering Fracture Mechanics, 2000, 67(3): 193-207. [26] MARANDI S M, RAHMANI K, TAJDARI M. Foreign object damage on the leading edge of gas turbine blades[J]. Aerospace Science and Technology, 2014, 33(1): 65-75. [27] WU Y, PENG Z, WU L. Fatigue life calculation of the in-service dented pipeline[J]. Key Engineering Materials, 2011, 467-469: 1327-1332. [28] PINHEIRO B, PASQUALINO I, CUNHA S. Fatigue life assessment of damaged pipelines under cyclic internal pressure: Pipelines with longitudinal and transverse plain dents[J]. International Journal of Fatigue, 2014, 68: 38-47. [29] ZHAN Z X, HU W P, SHEN F, et al. Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage[J]. International Journal of Fatigue, 2017, 96: 208-223. [30] LV Z Y, XIONG J J, TONG L, et al. A practical approach for evaluating safe fatigue life of hydraulic actuator in helicopter based on a nominal force concept and minimal datasets[J]. Aerospace Science and Technology, 2017, 62: 158-164. [31] TIAN B J, XIONG J J, LIU J Z. A new approach for evaluating fatigue lives of multi-fastener mechanical joints based on a nominal stress concept and minimal datasets[J]. International Journal of Fatigue, 2015, 80: 257-265. [32] FU Y, XIONG J J, SHENOI R A. New models for depicting corrosion fatigue behaviour and calendar life of metallic structural component[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(2): 207-222. [33] XIONG J J, SHENOI R A. Fatigue and fracture reliability engineering[M]. London: Springer London, 2011. [34] ZHENG Z Q, CAI B, ZHAI T, et al. The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy[J]. Materials Science and Engineering: A, 2011, 528(4-5): 2017-2022. [35] 穆志韬, 曾本银, 金平. 直升机结构疲劳[M]. 北京: 国防工业出版社, 2009. MU Z T, ZENG B Y, JIN P. Fatigue of helicopter structures[M]. Beijing: National Defense Industry Press, 2009(in Chinese). [36] CAI X J, XU J Q. A generalized life evaluation formula for uniaxial and multiaxial static fatigue[J]. Ceramics International, 2016, 42(2): 3212-3218. [37] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact even: D7136/D7136M-07[S].West Conshohocken: American Society for Testing and Materials, 2007. [38] ASTM. Standard test methods for tension testing of metallic materials: E8/E8M-16a[S]. West Conshohocken: American Society for Testing and Materials, 2016. [39] ASTM. Standard practice for: presentation of constant amplitude fatigue test results for metallic materials:E468-90[S]. West Conshohocken:American Society for Testing and Materials, 2004. [40] LONG A L, WAN M, WANG W P, et al. Forming methodology and mechanism of a novel sheet metal forming technology-electromagnetic superposed forming(EMSF)[J]. International Journal of Solids and Structures, 2018, 151: 165-180. [41] BRAR N S, JOSHI V S, HARRIS B W, et al. Constitutive model constants for Al7075-T651 and Al7075-T6[C]//AIP, 2009: 945-948. |