1 |
彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587.
|
|
PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525587 (in Chinese).
|
2 |
万鹏, 李迎光, 刘长青, 等. 基于域对抗门控网络的变工况刀具磨损精确预测方法[J]. 航空学报, 2021, 42(10): 524879.
|
|
WAN P, LI Y G, LIU C Q, et al. Method for accurate prediction of tool wear under varying cutting conditions based on domain adversarial gating neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524879 (in Chinese).
|
3 |
张晟斐, 李天梅, 胡昌华, 等. 基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J]. 航空学报, 2022, 43(8): 225708.
|
|
ZHANG S F, LI T M, HU C H, et al. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225708 (in Chinese).
|
4 |
刘斌, 许靖, 霍美玲, 等. 基于多尺度自适应注意力网络的剩余寿命预测[J]. 航空学报, 2023, 44(5): 226918.
|
|
LIU B, XU J, HUO M L, et al. Remaining useful life prediction based on multi-scale adaptive attention network[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 226918 (in Chinese).
|
5 |
BAGRI S, MANWAR A, VARGHESE A, et al. Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks[J]. Journal of Manufacturing Processes, 2021, 71: 679-698.
|
6 |
常钰, 魏乐, 王瑞祥. 数据驱动的刀具剩余寿命预测方法综述[J]. 电子技术与软件工程, 2020 (19): 193-197.
|
|
CHANG Y, WEI L, WANG R X. Summary of data-driven prediction methods for tool remaining life[J]. Electronic Technology & Software Engineering, 2020(19): 193-197 (in Chinese).
|
7 |
ZHU K P, ZHANG Y. A generic tool wear model and its application to force modeling and wear monitoring in high speed milling[J]. Mechanical Systems and Signal Processing, 2019, 115: 147-161.
|
8 |
GOMATHI K, BALAJI A. Tool condition monitoring of PCB milling machine based on vibration analysis[J]. Materials Today: Proceedings, 2021, 45: 3386-3397.
|
9 |
COOPER C, WANG P, ZHANG J J, et al. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals[J]. Procedia Manufacturing, 2020, 49: 105-111.
|
10 |
QIANG B Y, SHI K N, LIU N, et al. Application of cutting power consumption in tool condition monitoring and wear prediction based on Gaussian process regression under variable cutting parameters[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(1): 37-50.
|
11 |
刘胜辉, 张人敬, 张淑丽, 等. 基于深度神经网络的切削刀具剩余寿命预测[J]. 哈尔滨理工大学学报, 2019, 24(3): 1-8.
|
|
LIU S H, ZHANG R J, ZHANG S L, et al. Prediction of remaining life of cutting tool based on DNN[J]. Journal of Harbin University of Science and Technology, 2019, 24(3): 1-8 (in Chinese).
|
12 |
ZHU T, WANG W B, YU M. A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition,BiGRU and error correction[J]. Energy, 2023, 276: 127565.
|
13 |
SHEN B, GUI Y F, CHEN B, et al. Application of spindle power signals in tool condition monitoring based on HHT algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3): 1385-1395.
|
14 |
ZHU Y M, WU J C, WU J, et al. Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion[J]. Reliability Engineering & System Safety, 2022, 218: 108179.
|
15 |
WU J, SU Y H, CHENG Y W, et al. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system[J]. Applied Soft Computing, 2018, 68(C): 13-23.
|
16 |
KUMAR A, CHINNAM R B, TSENG F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools[J]. Computers and Industrial Engineering, 2019, 128(C): 1008-1014.
|
17 |
LI H, WANG W, LI Z W, et al. A novel approach for predicting tool remaining useful life using limited data[J]. Mechanical Systems and Signal Processing, 2020, 143: 106832
|
18 |
LI D H, LI Y G, LIU C Q. Gaussian process regression model incorporated with tool wear mechanism[J]. Chinese Journal of Aeronautics, 2022, 35(10): 393-400.
|
19 |
LIU C F, ZHU L D. A two-stage approach for predicting the remaining useful life of tools using bidirectional long short-term memory[J]. Measurement, 2020, 164: 108029.
|
20 |
AN Q L, TAO Z R, XU X W,et al. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network[J]. Measurement, 2020, 154: 107461.
|
21 |
ZHU Y M, ZI Y Y, XU J, et al. An unsupervised dual-regression domain adversarial adaption network for tool wear prediction in multi-working conditions[J]. Measurement, 2022, 200: 111644.
|
22 |
ZHOU J T, ZHAO X, GAO J. Tool remaining useful life prediction method based on LSTM under variable working conditions[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9): 4715-4726.
|
23 |
蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27(6): 1541-1549.
|
|
CAI W L, HU X F, LIU M X. Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(6): 1541-1549 (in Chinese).
|
24 |
XIAO Y Q, WANG J Q, HE Z M, et al. Deep transfer learning with metric structure for fault diagnosis[J]. Knowledge-Based Systems, 2022, 256: 109826.
|
25 |
王妍, 胡小锋. 基于深度迁移学习的刀具剩余寿命预测[J]. 组合机床与自动化加工技术, 2022(8): 133-136.
|
|
WANG Y, HU X F. Prediction of tool remaining useful life based on deep transfer learning[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(8): 133-136 (in Chinese).
|
26 |
张倩, 李海港, 李明, 等. 基于多源动态TrAdaBoost的实例迁移学习方法[J]. 中国矿业大学学报, 2014, 43(4): 713-720.
|
|
ZHANG Q, LI H G, LI M,et al. Instance-based transfer learning method using multi-source dynamic TrAdaBoost[J]. Journal of China University of Mining & Technology, 2014, 43(4): 713-720 (in Chinese).
|
27 |
DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]∥ Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 193-200.
|
28 |
PARDOE D, STONE P. Boosting for regression transfer[C]∥ Proceedings of the 27th International Conference on International Conference on Machine Learning. New York: ACM, 2010: 863-870.
|
29 |
QIANG B Y, SHI K N, LIU N, et al. Integrating physics-informed recurrent Gaussian process regression into instance transfer for predicting tool wear in milling process[J]. Journal of Manufacturing Systems, 2023, 68: 42-55.
|
30 |
International Organization for Standardization. Tool life testing in end milling: [S]. 1989.
|
31 |
LIU Z Y, GUO Y B, SEALY M P, et al. Energy consumption and process sustainability of hard milling with tool wear progression[J]. Journal of Materials Processing Technology, 2016, 229: 305-312.
|
32 |
SHI K N, ZHANG D H, LIU N, et al. A novel energy consumption model for milling process considering tool wear progression[J]. Journal of Cleaner Production, 2018, 184: 152-159.
|