[1] 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J]. 航空学报, 2020, 41(10):324136. YE B J,BAO X,LIU B,et a1. A machine learning method to aircraft approach time prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):324136(in Chinese). [2] SUN J Z, LI C Y, LIU C, et al. A data-driven health indicator extraction method for aircraft air conditioning system health monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(2):409-416. [3] BRYAN M, SANTANU D, KANISHKA B, et al. Discovering anomalous aviation safety events using scalable data mining algorithms[J]. Journal of Aerospace Information Systems,2013,10(10):467-475. [4] OEHLING J L, BARRY D J. Using machine learning methods in airline flight data monitoring to generate new operational safety knowledge from existing data[J]. Safety Science, 2019,114(4):89-104. [5] ABRAR O A, RASHID M. An ensemble machine and deep learning model for risk prediction in aviation systems[C]//2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 2020:54-59. [6] BEULEN M, SCHERP L, SANTOS B F. Dynamic evaluation of airline Crew's flight requests using a neural network[J]. EURO Journal on Transportation and Logistics, 2020, 8:1-12. [7] LHÉRITIER A, BOCAMAZO M, DELAHAYE T, et al. Airline itinerary choice modeling using machine learning[J]. Journal of Choice Modelling, 2019, 7(31):198-209. [8] ZHOU D, ZHUANG X, ZUO H F, et al. Deep learning-based approach for civil aircraft hazard identification and prediction[J]. IEEE, 2020,8:103665-103683 [9] 曾声奎. 可靠性设计分析基础[M]. 北京:北京航天航空大学出版社, 2015, 1-14. ZENG S K. Basis of reliability design and analysis[M]. Beijing:Beihang University Press, 2015, 1-14(in Chinese). [10] 孙元章, 程林, 何剑.电力系统运行可靠性理论[M]. 北京:清华大学出版社, 2012:1-15. SUN Y Z, CHENG L, HE J. Power system operational reliability theory[M]. Beijing:Tsinghua University Press, 2012:1-15(in Chinese). [11] 康锐. 确信可靠性理论与方法[M]. 北京:国防工业出版社, 2020:3-136. KANG R. Belief reliability theory and methodology[M]. Beijing:National Defense Industry Press, 2020:3-136(in Chinese). [12] 熊贝贝. 基于数据包络分析的环境绩效评价方法及其应用研究[D]. 合肥:中国科学技术大学, 2019. XIONG B B. Environmental efficiency evaluation and its applications via data envelopment analysis[D].Hefei:University of Science and Technology of China, 2019(in Chinese). [13] NAHANGI M, CHEN Y T, MCCABE B. Safety-based efficiency evaluation of construction sites using data envelopment analysis (DEA)[J]. Safety Science, 2019, 113:382-388. [14] TELLES E S, LACERDA D P, MORANDI M I W M, et al. Drum-buffer-rope in an engineering-to-order system:An analysis of an aerospace manufacturer using data envelopment analysis (DEA)[J]. International Journal of Production Economics, 2020, 222:107500. [15] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2:429-444. [16] 杨国梁, 刘文斌, 郑海军. 数据包络分析方法(DEA)综述[J]. 系统工程学报, 2013, 28(6):840-860. YANG G D, LIU W B, ZHENG H J. Review of data envelopment analysis[J]. Journal of Systems Engineering, 2013, 28(6):840-860(in Chinese). [17] 《运筹学》教材编写组. 运筹学.[M]第4版. 北京:清华大学出版社, 2012. Textbook Compiling Group of Operations Research. Operations research.[M]4th Edition. Beijing:Tsinghua University Press, 2012(in Chinese). [18] THANASSOULIS E, KORTELAINEN M, JOHNES G, et al. Costs and efficiency of higher education institutions in England:a DEA analysis[J]. Journal of the Operational Research Society, 2011, 62(7):1282-1297. [19] 马立杰. DEA理论及应用研究[D].济南:山东大学, 2007. MA L J. Study on DEA theory and its applications[D].Jinan:Shandong University, 2007(in Chinese). [20] LEO B. Random forests[J]. Machine Learning, 2001,45:5-32. [21] 刘玥. 基于集成学习的工业过程监测[D].杭州:浙江大学, 2019. LIU Y. Ensemble learning based industrial process monitoring[D]. Hangzhou:Zhejiang University, 2019(in Chinese). [22] 邱锡鹏. 神经网络与深度学习[M]. 北京:机械工业出版社, 2020:82-98. QIU X P. Neural networks and deep learning[M]. Beijing:Machinery Industry Press, 2020:82-98(in Chinese). |