[1] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社, 2003. SHEN Q. Rarefied gas dynamics[M]. Beijing:National Defense Industry Press, 2003(in Chinese). [2] XU K, HUANG J. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764. [3] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J].气体物理,2019,4(4):1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J].Physics of Gases, 2019,4(4):1-13(in Chinese). [4] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press, 1994:458. [5] JEONG S, CHIBA K, OBAYASHI S. Data mining for aerodynamic design space:AIAA-2005-5079[R]. Reston:AIAA, 2005. [6] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using Kriging model:AIAA-2006-932[R]. Reston:AIAA, 2006. [7] CHIBA K, OBAYASHI S. Data mining for multidisciplinary design space of regional jet wing[J]. Journal of Aerospace Computing, Information, and Communication, 2007, 4:1019-1036. [8] 陈杰, 孙刚. 基于SOM神经网络的超临界翼型设计[J].力学季刊, 2011, 32(3):411-417. CHEN J, SUN G. Supercritical airfoil design based on SOM neural network[J]. Chinese Quarterly of Mechanics, 2011, 32(3):411-417(in Chinese). [9] 司景喆, 孙刚. 基于神经网络的风机叶片叶尖翼型设计[J].力学季刊, 2012, 33(4):672-678. SI J Z, SUN G. Design of wind turbine blade based on SOM[J]. Chinese Quarterly of Mechanics, 2012, 33(4):672-678(in Chinese). [10] MILANO M, KOUMOUTSAKOS P. Neural network modeling for near wall turbulent flow[J]. Journal of Computational Physics, 2002, 182(1):1-26. [11] YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]//13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012:38-42. [12] TRACEY B, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [13] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [14] XIAO H, WU J, WANG J, et al. Quantifying and reducing model-form uncertainties in reynolds averaged navier-stokes equations:a data-driven, physics-informed bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136. [15] EDELING W N, CINNELLA P, DWIGHT R P, et al. Bayesian estimates of parameter variability in the k-ε turbulence model[J]. Journal of Computational Physics, 2014, 258:73-94. [16] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA, 1998. [17] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of lateral-directional unsteady aerodynamics:AIAA-1999-4012[R]. Reston:AIAA, 1998. [18] WANG Z, LI J, LAN C E, et al. Estimation of unsteady aerodynamic models from flight test data:AIAA-2001-4017[R]. Reston:AIAA, 2001. [19] WANG Z, LAN C E, BRANDON J M. Estimation of lateral-directional unsteady aerodynamic models from flight test data:AIAA-2002-4626[R]. Reston:AIAA, 2002. [20] LAN C E, LI J, YAU W, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data:AIAA-2002-4804[R]. Reston:AIAA, 2002. [21] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006,63(1):3-42. [22] 王爱平, 万国伟, 程志全, 等. 支持在线学习的增量式极端随机森林分类器[J]. 软件学报, 2011,22(9):2019-2074. WANG A P, WAN G W, CHENG Z Q, et al. Incremental learning extremely random forest classifier for online learning[J].Journal of Software, 2011,22(9):2019-2074(in Chinese). [23] 于普兵. 基于DSMC和气体动理学统一格式的激波结构模拟[C]//第十二届全国物理力学学术会议论文摘要集, 2012. YU P B. Shock structure simulation based on DSMC and unified gas kinetic scheme[C]//The 12th National Conference of Physical Mechanics, 2012(in Chinese). [24] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州:浙江大学,2014. ZHAO W W. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou:Zhejiang University,2014(in Chinese). [25] 李航.统计学习方法[M].北京:清华大学出版社, 2012. LI H. Statistical learning methods[M]. Beijing:Tsinghua University Press, 2012(in Chinese). [26] 张振亚, 王进, 程红梅, 等. 基于余弦相似度的文本空间索引方法研究[J].计算机科学, 2005,32(9):160-163. ZHANG Z Y, WANG J, CHENG H M, et al. An approach for spatial index of text information based on cosine similarity[J].Computer Science, 2005,32(9):160-163(in Chinese). [27] 贾怀勤. 应用统计[M]. 北京:对外经济贸易大学出版社,2010. JIA H Q. Applied Statistics[M]. Beijing:University of International Business and Economics Press, 2010(in Chinese). |