[1] |
SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington,D.C.:NASA, 2014.
|
[2] |
BALDWIN B S. Thin layer approximation and algebraic model for separated turbulent flows[C]//16th Aerospace Sciences Meeting, 1978:78-257.
|
[3] |
POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2000, 12(11):806.
|
[4] |
HOLLAND J R, BAEDER J D, DURAISAMY K. Towards integrated field inversion and machine learning with embedded neural networks for RANS modeling[C]//AIAA Scitech 2019 Forum. Reston, VA:AIAA, 2019.
|
[5] |
赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6):122581. ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J] Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122581 (in Chinese).
|
[6] |
DURAISAMY K, SPALART P R, RUMSEY C L. Status, emerging ideas and future directions of turbulence modeling research in aeronautics:NASA/TM-2017-219682[R]. Washington, D.C.:NASA Langley Research Center, 2017.
|
[7] |
陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480 (in Chinese).
|
[8] |
PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2015, 305:758-774.
|
[9] |
SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110.
|
[10] |
LING J, TEMPLETON J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier-Stokes uncertainty[J]. Physics of Fluids, 2015, 27(8):085103.
|
[11] |
XIAO H, WU J, WANG J, et al. Quantifying model-form uncertainties in Reynolds averaged Navier-Stokes equations:An open-box, physics-based, bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136.
|
[12] |
WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3):034603.
|
[13] |
WU J L, WANG J X, XIAO H, et al. A priori assessment of prediction confidence for data-driven turbulence modeling[J]. Flow, Turbulence and Combustion, 2017, 99(1):25-46.
|
[14] |
ZHANG W, ZHU L, LIU Y, et al. Machine learning methods for turbulence modeling in subsonic flows over airfoils[EB/OL]. arXiv preprint arXiv:1806. 05904, 2018.
|
[15] |
DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377.
|
[16] |
RAISSI M, WANG Z, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861:119-137.
|
[17] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378:686-707.
|
[18] |
FAN Y, CHENG C, LI W. Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows[J]. Applied Mathematics and Mechanics, 2019(6):1-12.
|
[19] |
LI W, FAN Y, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible channel flows[J]. Journal of Fluid Mechanics, 2019, 875:101-123.
|
[20] |
FAN Y, LI W, SERGIO P. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2019[in press].
|
[21] |
SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[J]. Recherche Aerospatiale, 1994, 1:5-21.
|
[22] |
LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science in China Series G (Physics, Mechanics and Astronomy), 2010, 53(9):1651-1658.
|
[23] |
RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790:339-367.
|
[24] |
LEE M, Moser R D. Direct numerical simulation of turbulent channel flow up to Re=5 200[J]. Journal of Fluid Mechanics, 2015, 774:395-415.
|
[25] |
SCHAEFER J A. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2015, 55(1):195-213.
|
[26] |
JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
|
[27] |
NIELSEN E J, ANDERSON W K. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[M]. Washington, D.C.:NASA, 1998.
|
[28] |
SAAD Y, SCHULTZ M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869.
|
[29] |
赵锐利. 双曲型偏微分方程数值解及反问题的研究[D]. 西安:西安理工大学, 2014. ZHAO R L. The research of hyperbolic partial differential equation of numerical method and the inverse problem[D]. Xi'an:Xi'an University of Technology, 2014 (in Chinese).
|