航空学报 > 2019, Vol. 40 Issue (6): 122593-122593   doi: 10.7527/S1000-6893.2018.22593

伞翼无人机精确建模与控制

朱虹, 孙青林, 邬婉楠, 孙明玮, 陈增强   

  1. 南开大学 人工智能学院, 天津 300350
  • 收稿日期:2018-08-07 修回日期:2018-09-04 出版日期:2019-06-15 发布日期:2018-09-25
  • 通讯作者: 孙青林 E-mail:sunql@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(61273138)

Accurate modeling and control for parawing unmanned aerial vehicle

ZHU Hong, SUN Qinglin, WU Wannan, SUN Mingwei, CHEN Zengqiang   

  1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China
  • Received:2018-08-07 Revised:2018-09-04 Online:2019-06-15 Published:2018-09-25
  • Supported by:
    National Natural Science Foundation of China (61273138)

摘要: 前缘切口以及后缘下偏是影响伞衣气动力计算的关键因素。为实现伞翼无人机(UAV)的精确控制,从提高翼伞系统动力学模型的精度入手,在升力线理论的基础上,基于计算流体动力学方法,综合考虑前缘切口以及后缘下偏的影响,计算了不同切口尺寸模型的升力、阻力系数。利用最小二乘法辨识了升力、阻力系数与迎角、切口尺寸以及下偏量的关系,实现了翼伞气动力的精确计算,改进了伞翼无人机的六自由度动力学模型。对改进的动力学模型进行轨迹跟踪控制的仿真,通过与空投试验数据的对比,验证了改进翼伞系统动力学模型方法的准确性,对于伞翼无人机的仿真和控制器设计具有重要意义。

关键词: 伞翼无人机, 前缘切口, 后缘下偏, 动力学模型, 计算流体动力学

Abstract: The leading edge incision and the trailing edge deflection are essential to the calculation of the aerodynamic parameters of the canopy. To achieve precise control of the parawing Unmanned Aerial Vehicle (UAV), the accuracy of the dynamic model of the parafoil system is improved. Taking the leading edge incision and the trailing edge deflection into account, the lift and drag coefficients are calculated by combining the computational fluid dynamics with the lifting-line theory. The least square method is used to identify the relationships between the lift and drag coefficients and the angle of attack, the size of the incision and the brake deflection, realizing the accurate calculation of the aerodynamic parameters of the canopy. And the results are incorporated into the six degree of freedom dynamic model for a parawing UAV. A simulation of trajectory tracking control based on the revised dynamic model is conducted. By comparing the simulation results with the airdrop testing data, the accuracy of the proposed method is verified, shedding lights on the simulation of the parawing UAV and the design of the controller.

Key words: parawing unmanned aerial vehicle, leading edge incision, trailing edge deflection, dynamic model, computational fluid dynamics

中图分类号: