[1] 彭志雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese). [2] 刘房彬, 袁军娅. 火星再入飞行器风洞实验与真实飞行之间相关性的探讨[J]. 北京航空航天大学学报, 2019, 45(4):787-795. LIU F B, YUAN J Y. Discussion on correlation between wind tunnel test and flight of Mars reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4):787-795(in Chinese). [3] 陶阳, 宗群, 曾凡林. 高超声速飞行器气动模型数据拟合方法研究[C]//第三十一届中国控制会议论文集. 北京:中国自动化学会控制理论专业委员会, 2012:1275-1278. TAO Y, ZONG Q, ZENG F L. Research on data fitting method of aerodynamic model of hypersonic vehicle[C]//Proceedings of the 31 st Chinese Control Conference. Beijing:Technical Committee on Control Theory, Chinese Association of Automation, 2012:1275-1278(in Chinese). [4] DOWELL E H. Eigenmode analysis in unsteady aerodynamics:Reduced order models[J]. AIAA Journal, 1996, 34(8):1578-1583. [5] SILVA W. Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques:AIAA-1997-3712[R]. Reston:AIAA, 1997. [6] 陈刚, 李跃名. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advance in Mechanics, 2011, 41(6):686-701(in Chinese). [7] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese). [8] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241. [9] 聂春生, 黄建栋, 王迅, 等. 基于POD方法的复杂外形飞行器热环境快速预测方法[J]. 空气动力学学报, 2017, 35(6):760-765. NIE C S, HUANG J D, WANG X, et al. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. Acta Aerodynamica Sinica, 2017, 35(6):760-765(in Chinese). [10] 张天娇, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1):1-11. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):1-11(in Chinese). [11] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化设计中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [12] 王孝学. RBF神经网络在再入体气动参数辨识中的应用研究[J]. 导弹与航天运载技术, 2002(6):5-8. WANG X X. Application of a RBF neural network in aerodynamic parameter indentification of a reentry body[J]. Missiles and Space Vehicles, 2002(6):5-8(in Chinese). [13] 张锋涛, 崔凯, 杨国伟, 等. 基于神经网络技术的乘波体优化设计[J]. 力学学报, 2009, 41(3):418-424. ZHANG F T, CUI K, YANG G W, et al. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3):418-424(in Chinese). [14] 寇家庆, 张伟伟. 基函数宽度对递归RBF神经网络气动力模型精度的影响研究[J]. 航空工程进展, 2015, 6(3):261-270. KOU J Q, ZJAMG W W. Research on the effects of function widths of aerodynamic modeling based on recursive RBF neural network[J]. Advances in Aeronautical Science and Engineering, 2015, 6(3):261-270(in Chinese). [15] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese). [16] 尹明朗, 寇家庆, 张伟伟. 一种高泛化能力的神经网络气动力降阶模型[J]. 空气动力学学报, 2017, 35(2):205-213. YIN M L, KOU J Q, ZHANG W W. A reduced-order aerodynamic model with high generalization capability based on neural network[J]. Acta Aerodynamica Sinica, 2017, 35(2):205-213(in Chinese). [17] 张栋. 飞行仿真气动数据处理的神经网络应用[J]. 航空计算技术, 2002, 32(4):12-19. ZHANG D. Numerical simulation of a mixed compression supersonic inlet flow[J]. Aeronautical Computer Technique, 2002, 32(4):12-19(in Chinese). [18] BROOMHEAD D S, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 2(3):321-355. [19] MOODY J, DARKEN C J. Fast learning in network of locally-tuned processing units[J]. Neural Computation, 1989, 1(2):281-294. [20] HOLLIS B R, HOLLINGSWORTH K E. Laminar, transitional, and turbulent heating on mid lift-to-drag ratio entry vehicles[J]. Journal of Spacecraft and Rockets, 2013, 50(5):937-949. [21] 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4):594-600. ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterion in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):594-600(in Chinese). [22] ZHANG Z C, GAO Z X, JIANG C W, et al. A RANS model correction on unphysical over-prediction of turbulent quantities across shock wave[J]. International Journal of Heat and Mass Transfer, 2017, 106:1107-1119. |