航空学报 > 2021, Vol. 42 Issue (3): 223978-223978   doi: 10.7527/S1000-6893.2020.23978

仿生负泊松比拉胀内凹蜂窝结构耐撞性

任毅如1,2, 蒋宏勇1,2, 金其多1,2, 朱国华3   

  1. 1. 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙 410082;
    2. 湖南大学 机械与运载工程学院, 长沙 410082;
    3. 长安大学 汽车学院, 西安 710064
  • 收稿日期:2020-03-15 修回日期:2020-04-10 发布日期:2020-05-14
  • 通讯作者: 蒋宏勇 E-mail:jianghy@hnu.edu.cn
  • 基金资助:
    国家自然科学基金创新研究群体项目(51621004);国家自然科学基金(11402011);湖南省研究生科研创新项目(CX2018B204)

Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio

REN Yiru1,2, JIANG Hongyong1,2, JIN Qiduo1,2, ZHU Guohua3   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
    2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
    3. School of Automobile, Chang'an University, Xi'an 710064, China
  • Received:2020-03-15 Revised:2020-04-10 Published:2020-05-14
  • Supported by:
    Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51621004); National Natural Science Foundation of China (11402011); Hunan Provincial Innovation Foundation for Postgraduate (CX2018B204)

摘要: 基于自然界微观生物结构的启发,设计了1种新型仿生负泊松比拉胀内凹蜂窝(ARH),并对其耐撞性能进行数值模拟。结合竹子的梯度结构和椰子树的同心胞结构,提出了2种单向梯度和2种双向梯度同心ARH结构。梯度同心结构设计方法不仅可诱导结构渐进的冲击行为,而且因其较低的等效壁厚可改善其比吸能能力。与传统ARH结构相比,对仿生ARH结构的平台应力和吸能特性进行研究,并分析耦合压溃变形模式、收缩变形机理和负泊松比效应等来揭示结构的增强机理。结果表明:预测的耐撞响应和压溃变形模式与参考结果相似;相对传统的ARH,梯度同心ARH有更高的平台应力和比吸能,且平台应力的上升和压溃变形模式均呈梯度变化;梯度方向对压溃变形模式和各层变形顺序影响较大;双向梯度同心ARH比单向梯度同心ARH因耦合变形具有更高的吸能能力;同心胞数对蜂窝各层的收缩变形有较大影响。

关键词: 负泊松比, 蜂窝结构, 仿生设计, 耐撞性, 增强设计, 梯度

Abstract: Based on the inspiration from micro biological structure in nature, a novel bio-inspired negative Poisson’s ratio (NPR) auxetic reentrant honeycomb (ARH) is designed, and the crashworthiness is studied numerically. Combining both graded structure of bamboo and concentric-cell structure of coconut palm, two types of unidirectionally and two types of bidirectionally graded concentric ARH are proposed. The present graded/concentric structure design not only induces the progressive structural crushing behaviors, but improves the specific energy-absorption capacity because of low equivalent wall-thickness. The plateau stress and energy-absorption characteristics of the bio-inspired ARH structure are studied in comparison with traditional ARH structure. Furthermore, the coupled crushing deformation modes, shrinkage deformation mechanism and NPR effect are systematically analyzed to reveal the structural enhancement mechanism. Results show that the predicted stress-strain responses and crushing deformation modes correlate well with the reference results. Relative to conventional ARH, the graded concentric ARH has higher plateau stress and specific energy-absorption. The gradient variations are presented for both plateau stress and crushing deformation modes. The gradient direction has a significant effect on the crushing deformation modes and deformation order of every layer, the bidirectionally graded concentric ARH has higher energy absorption capacity than the unidirectionally graded concentric ARH, and the shrinkage deformation is significantly affected by the number of concentric-cell.

Key words: negative Poisson’s ratio, honeycomb, bio-inspired design, crashworthiness, functional, grading

中图分类号: