[1] BAMMERT K, STOBBE H. Results of experiments for determining the influence of blade profile changes and manufacturing tolerances on the efficiency, the enthalpy drop, and the mass flow of multi-stage axial turbines:ASME Paper No. 70 WA/GT-4[R]. New York:ASME, 1970. [2] BAMMERT K, SANDSTEDE H. Influence of manufacturing tolerances and surface roughness of blades on the performance of turbines[J].Journal of Engineering for Power, 1976, 98(1):29-36. [3] GARZON V, DARMOFAL D. Impact of geometric variability on axial compressor performance[J].Journal of Turbomachinery, 2003, 125(4):692-703. [4] EDWARDS R, ASGHAR A, WOODASON R, et al. Numerical investigation of the influence of real world blade profile variation on the aerodynamic performance of transonic nozzle guide vanes[J].Journal of Turbomachinery, 2012, 134(2):021014. [5] LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J].Journal of Engineering for Gas Turbines and Power, 2012, 134(11):112601. [6] SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J].Journal of Turbomachinery, 2014, 136(9):091005. [7] YANG J, XIONG J, MCBEAN I, et al. Performance impact of manufacturing variations for multi-stage steam turbines[J].Journal of Propulsion and Power, 2017, 33(4):1031-1036. [8] 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J].工程热物理学报, 2017, 38(3):490-497. CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J].Journal of Engineering Thermophysics, 2017, 38(3):490-497(in Chinese). [9] 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J].工程热物理学报, 2017, 38(3):498-504. LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J].Journal of Engineering Thermophysics, 2017, 38(3):498-504(in Chinese). [10] LUO J, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J].Aerospace Science and Technology, 2018, 77:471-484. [11] LI H, MA C. Hybrid dimension-reduction method for robust design optimization[J].AIAA Journal, 2013, 51(1):138-144. [12] PAIVA R, CRAWFORD C, SULEMAN A. Robust and reliability-based design optimization framework for wing design[J].AIAA Journal, 2014, 52(4):711-724. [13] RYAN K, LEWIS M, YU K. Comparison of robust optimization methods applied to hypersonic vehicle design[J].Journal of Aircraft, 2015, 52(5):1510-1523. [14] KEANE A J. Comparison of several optimization strategies for robust turbine blade design[J].Journal of Propulsion and Power, 2009, 25(5):1092-1099. [15] GHISU T, PARKS G, JARRETT J, et al. Robust design optimization of gas turbine compression systems[J].Journal of Propulsion and Power, 2011, 27(2):282-295. [16] WANG X, HIRSCH C, LIU Z, et al. Uncertainty-based robust aerodynamic optimization of rotor blades[J].International Journal for Numerical Methods in Engineering, 2013, 94:111-127. [17] VINOGRADOV K, KRETININ G, OTRYAHINA K, et al. Robust optimization of the hpt blade cooling and aerodynamic efficiency:ASME Paper No. GT2016-56195[R]. New York:ASME, 2016. [18] REIS C, MANZANARES-FILHO N, DE LIMA A. Robust optimization of turbomachinery cascades using inverse methods[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(1):297-305. [19] MA C, GAO L, CAI Y, et al. Robust optimization design of compressor blade considering machining error:ASME Paper GT2017-63157[R]. New York:ASME, 2017. [20] GIEBMANNS A, BACKHAUS J, FREY C, et al. Compressor leading edge sensitivities and analysis with an adjoint flow solver:ASME Paper GT2013-94427[R]. New York:ASME, 2013. [21] ZAMBONI G, BANKS G, BATHER S. Gradient-based adjoint and design of experiment CFD methodologies to improve the manufacturability of high pressure turbine blades:ASME Paper GT2016-56042[R]. New York:ASME, 2016. [22] JOUINI D. Experimental investigation of two transonic linear turbine cascades at off-design conditions[D]. Ottawa:Carleton University, 2000. [23] HICKS R, HENNE P. Wing design by numerical optimization[J].Journal of Aircraft, 1978, 15(7):407-412. [24] JAMESON A. Aerodynamic design via control theory[J].Journal of Scientific Computing, 1988, 3(3):233-260. [25] NADARAJAH S, JAMESON A. Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint methods[J].AIAA Journal, 2007, 45(7):1478-1491. [26] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J].航空学报, 2007, 28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese). [27] MARTINS J, LAMBE A. Multidisciplinary design optimization:A survey of architectures[J].AIAA Journal, 2013, 51(9):2049-2075. [28] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J].航空学报, 2018, 39(5):121731. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121731(in Chinese). [29] YANG S, WU H, LIU F, et al. Aerodynamic design of cascades by using an adjoint equation method:AIAA-2003-1068[R]. Reston:AIAA, 2003. [30] WANG D, HE L. Adjoint aerodynamic design optimization for blades in multi-stage turbo-machines:part i-methodology and verification[J].Journal of Turbomachinery, 2010, 132(2):021011. [31] LUO J, XIONG J, LIU F, et al. Three-dimensional aerodynamic design optimization of a turbine blade by using an adjoint method[J].Journal of Turbomachinery, 2011, 133(1):011026. [32] WALTHER B, NADARAJAH S. Constrained adjoint-based aerodynamic shape optimization of a single-stage transonic compressor[J].Journal of Turbomachinery, 2013, 135(2):021017. [33] LUO J, LIU F, MCBEAN I. Turbine blade row optimization through endwall contouring by an adjoint method[J].Journal of Propulsion and Power, 2015, 31(2):505-518. [34] MA C, SU X, YUAN X. An efficient unsteady adjoint optimization system for multistage turbomachinery[J].Journal of Turbomachinery, 2016, 139(1):011003. [35] PAPADIMITRIOU D, GIANNAKOGLOU K. Comput-ation of Hessian matrix in aerodynamic inverse design using continuous adjoint formulations[J].Computers & Fluids, 2008, 37:1029-1039. [36] PAPADIMITRIOU D, GIANNAKOGLOU K. The continuous adjoint approach for second order sensitivities in viscous aerodynamic inverse design problems[J].Computers & Fluids, 2009, 38:1539-1548. |