[1] PASSE B, SRIDHARAN A, BAEDER J. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]//33rd AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2015:29. [2] ZHAO Y, LI X, SHI Y, et al. Analysis on rotor-propellers interaction flowfield for compound double-thust-propeller high-speed helicopters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2):154-164. [3] REDDINGER J, GANDHI F. Physics-based trim optimization of an articulated slowed-rotor compound helicopter in high-speed flight[J]. Journal of Aircraft, 2015, 52(6):1756-1766. [4] HERSEY S, SRIDHARAN A, CELI R. Multiobjective performance optimization of a coaxial compound rotorcraft configuration[J]. Journal of Aircraft, 2017, 54(4):1498-1507. [5] REDDINGER J, GANDHI F, KANG H. Using control redundancy for power and vibration reduction on a compound helicopter at high speeds[J]. Journal of The American Helicopter Society, 2018, 63(3):1-13. [6] JIANG X, SU C, XU Y, et al. An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs[J]. Journal of Central South University, 2018, 25(3):616-631. [7] BOSKOVIC J D, MEHRA R K. Control allocation in overactuated aircraft under position and rate limiting[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 2002:791-796. [8] BODSON M. Evaluation of optimization methods for control allocation[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):703-711. [9] PETERSEN J, BODSON M. Constrained quadratic programming techniques for control allocation[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1):91-98. [10] DOMAN D, OPPENHEIMER M. Improving control allocation accuracy for nonlinear aircraft dynamics[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2002. [11] BOLENDER M A, DOMAN D B. Nonlinear control allocation using piecewise linear functions:A linear programming approach[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):558-562. [12] HU Q, LI B, ZHANG Y. Nonlinear proportional-derivative control incorporating closed-loop control allocation for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):799-812. [13] CRISTOFARO A, POLYCARPOU M M, JOHANSEN T A. Fault-tolerant control allocation for overactuated nonlinear systems[J]. Asian Journal of Control, 2018, 20(2):621-634. [14] PEDRO J O, TSHABALALA T B. Fault-tolerant control of fixed-wing UAV using GA-optimised control allocation technique[C]//2017 11th ASian Control Conference (ASCC). Piscataway, NJ:IEEE Press, 2017:371-376. [15] HAMAYUN M T, EDWARDS C, ALWI H. Design and analysis of an integral sliding mode fault-tolerant control scheme[J]. IEEE Transactions on Automatic Control, 2012, 57(7):1783-1789. [16] 路遥, 董朝阳, 王青, 等. 存在整数约束的分布式驱动变体飞行器控制分配[J]. 控制理论与应用, 2018, 35(8):1083-1091 LU Y, DONG C Y, WANG Q, et al. Control allocation for distributed driving morphing aircraft with integer constraints[J]. Control Theory & Applications, 2018, 35(8):1083-1091(in Chinese). [17] BUFFINGTON J. Tailless aircraft control allocation[C]//Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-located Conferences, Reston, VA:AIAA, 1997. [18] 杨恩泉, 高金源, 李卫琪. 多目标非线性控制分配方法研究[J]. 航空学报, 2008, 29(4):995-1001 YANG E Q, GAO J Y, LI W Q. Research on multi-object nonlinear control allocation[J]. Acta Aeronautica et Astronuatica Sinica, 2008, 29(4):995-1001(in Chinese). [19] 贾瑞, 吴梅. 基于遗传算法的控制分配在飞艇中的应用[J]. 飞行力学, 2014, 32(4):364-367 JIA R, WU M. Application of genetic algorithm based control allocation in airship[J]. Flight Dynamics, 2014, 32(4):364-367(in Chinese). [20] CHOLLOM T D, OFODILE N, UBADIKE O. Application techniques of multi-objective particle swarm optimization:Aircraft flight control[C]//2016 UKACC 11th International Conference on Control (CONTROL). Piscataway, NJ:IEEE Press, 2016. [21] LEE J H, BYOUNG-MUN M, EUNG-TAI K. Autopilot design of tilt-rotor UAV using particle swarm optimization method[C]//2007 International Conference on Control, Automation and Systems. Piscataway, NJ:IEEE Press, 2007. [22] 徐冠峰, 陈铭. 小型共轴式直升机旋翼桨叶铰链力矩研究[J]. 航空动力学报, 2010, 25(8):1805-1810. XU G F, CHEN M. Research on rotor blade hinge moment of a small-scale coaxial helicopter[J]. Journal of Aerospace Power, 2010, 25(8):1805-1810(in Chinese). [23] CHEN R TN, LEBACQZ J V, AIKEN E W. Helicopter mathematical models and control law development for handing qualities:NASA-CR-249[R]. Washington, D.C.:NASA, 1988. [24] 蒋鸿翔, 徐锦法, 高正, 等. 新型复合式无人直升机悬停/着陆控制[J]. 航空学报, 2008, 29(S1):46-54. JIANG H X, XU J F, GAO Z, et al. Hover/landing control for the novel compound unmanned aerial helicopter[J]. Acta Aeronautica et Astronuatica Sinica, 2008, 29(S1):46-54(in Chinese). [25] 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7):620915. CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronuatica Sinica, 2017, 38(7):6-22(in Chinese). [26] 韩敏, 何泳. 基于高斯混沌变异和精英学习的自适应多目标粒子群算法[J]. 控制与决策, 2016, 31(8):1372-1378. HAN M, HE B. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation elite learning[J]. Control and Decision, 2016, 31(8):1372-1378(in Chinese). |