[1] CHEN H. Planning and scheduling method for the earth 's surface electromagnetic environment detection satellite resources[D]. Changsha: National University of Defense Technology, 2009: 1-21 (in Chinese). 陈浩. 地表电磁环境探测卫星的资源规划调度方法[D]. 长沙: 国防科学技术大学, 2009: 1-21. [2] VAZQUEZ R, PEREA F, GALÁN VIOQUE J. Resolution of an Antenna-Satellite assignment problem by means of integer linear programming[J]. Aerospace Science and Technology, 2014, 39: 567-574. [3] MARINELLI F, NOCELLA S, ROSSI F, et al. A Lagrangian heuristic for satellite range scheduling with resource constraints[J]. Computers & Operations Research, 2011, 38(11): 1572-1583. [4] BROWN N, ARGUELLO B, NOZICK L, et al. A heuristic approach to satellite range scheduling with bounds using Lagrangian relaxation[J]. IEEE Systems Journal, 2018, 12(4): 3828-3836. [5] SPANGELO S, CUTLER J, GILSON K, et al. Optimization-based scheduling for the single-satellite, multi-ground station communication problem[J]. Computers & Operations Research, 2015, 57: 1-16. [6] SHE Y C, LI S, ZHAO Y B. Onboard mission planning for agile satellite using modified mixed-integer linear programming[J]. Aerospace Science and Technology, 2018, 72: 204-216. [7] ZHANG Z J, ZHANG N, FENG Z R. Multi-satellite control resource scheduling based on ant colony optimization[J]. Expert Systems With Applications, 2014, 41(6): 2816-2823. [8] ZHANG Z J, HU F N, ZHANG N. Ant colony algorithm for satellite control resource scheduling problem[J]. Applied Intelligence, 2018, 48(10): 3295-3305. [9] SARKHEYLI A, BAGHERI A, GHORBANI-VAGHEI B, et al. Using an effective tabu search in interactive resources scheduling problem for LEO satellites missions[J]. Aerospace Science and Technology, 2013, 29(1): 287-295. [10] CHEN H, LI J, JING N, et al. Scheduling model and algorithms for autonomous electromagnetic detection satellites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1045-1053 (in Chinese). 陈浩, 李军, 景宁, 等. 电磁探测卫星星上自主规划模型及优化算法[J]. 航空学报, 2010, 31(5): 1045-1053. [11] LI Y Q, WANG R X, LIU Y, et al. Satellite range scheduling with the priority constraint: An improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28(3): 789-803. [12] SONG Y J, ZHANG Z S, SONG B Y, et al. Improved genetic algorithm with local search for satellite range scheduling system and its application in environmental monitoring[J]. Sustainable Computing: Informatics and Systems, 2019, 21: 19-27. [13] CHEN H, ZHOU Y R, DU C, et al. A satellite cluster data transmission scheduling method based on genetic algorithm with rote learning operator[C]//2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2016: 5076-5083. [14] TANG Y Y, WANG Y K, CHEN J Y, et al. Uplink scheduling of navigation constellation based on immune genetic algorithm[J]. PLoS One, 2016, 11(10): e0164730. [15] BARBULESCU L, WATSON J P, WHITLEY L D, et al. Scheduling space-ground communications for the air force satellite control network[J]. Journal of Scheduling, 2004, 7(1): 7-34. [16] VAZQUEZ A J, ERWIN R S. On the tractability of satellite range scheduling[J]. Optimization Letters, 2015, 9(2): 311-327. [17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [18] SUN G, CHEN H, PENG S, et al. Multi-objective optimization algorithm for satellite range scheduling based on preference MOEA[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524475 (in Chinese). 孙刚, 陈浩, 彭双, 等. 一种基于偏好MOEA的卫星地面站资源多目标优化算法[J]. 航空学报, 2021, 42(4): 524475. [19] SONG Y J, MA X, LI X J, et al. Learning-guided nondominated sorting genetic algorithm Ⅱ for multi-objective satellite range scheduling problem[J]. Swarm and Evolutionary Computation, 2019, 49: 194-205. [20] DU Y H, XING L N, ZHANG J W, et al. MOEA based memetic algorithms for multi-objective satellite range scheduling problem[J]. Swarm and Evolutionary Computation, 2019, 50: 100576. [21] ZHANG J W, XING L N, PENG G S, et al. A large-scale multiobjective satellite data transmission scheduling algorithm based on SVM+NSGA-Ⅱ[J]. Swarm and Evolutionary Computation, 2019, 50: 100560. [22] WANG Z H, ZHANG Z S, CHEN Y W. Multi-objective optimization of satellite-ground time synchronization scheduling problem[C]//2019 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2019: 530-537. [23] WANG J. Research on modeling and optimization techniques in united mission scheduling of imaging satellites[D]. Changsha: National University of Defense Technology, 2007: 38-86 (in Chinese). 王钧. 成像卫星综合任务调度模型与优化方法研究[D]. 长沙: 国防科学技术大学, 2007: 38-86. [24] LI L M, WANG Y L, TRAUTMANN H, et al. Multiobjective evolutionary algorithms based on target region preferences[J]. Swarm and Evolutionary Computation, 2018, 40: 196-215. [25] VAN VELDHUIZEN D A, LAMONT G. Evolutionary computation and convergence to a pareto front[C]//Proceedings of the Late Breaking Papers at the Genetic Programming 1998 Conference, 1998: 221-228. [26] DEB K, GUPTA S. Understanding knee points in bicriteria problems and their implications as preferred solution principles[J]. Engineering Optimization, 2011, 43(11): 1175-1204. [27] BRANKE J, DEB K, DIEROLF H, et al. Finding knees in multi-objective optimization[M]//Lecture Notes in Computer Science. Berlin: Springer, 2004: 722-731. [28] DAS I. On characterizing the "knee" of the Pareto curve based on Normal-Boundary Intersection[J]. Structural Optimization, 1999, 18(2): 107-115. [29] RACHMAWATI L, SRINIVASAN D. A multi-objective genetic algorithm with controllable convergence on knee regions[C]//2006 IEEE International Conference on Evolutionary Computation. Piscataway: IEEE Press, 2006: 1916-1923. [30] CHIU W Y, YEN G G, JUAN T K. Minimum Manhattan distance approach to multiple criteria decision making in multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 972-985. [31] DAVID H. MOEAFramework[EB/OL]. (2019-12-30)[2021-05-29]. http://moeaframework.org/. [32] Analytical Graphics Inc. Satellite Tool Kit 10.1.3[EB/OL]. [2021-05-29]. https://www.agi.com/. |