[1] ANHALT C, MONNER H P, BREITBACH E. Interdisciplinary wing design-structural aspects:03 WAC-29[R]. Warrendale:SAE International, 2003. [2] MONNER H, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircrafts:AIAA-2009-2128[R]. Reston:AIAA, 2009. [3] CONCILIO A, DIMINO I, PECORA R. SARISTU:Adaptive Trailing Edge Device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7):187-210. [4] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877. [5] 吕帅帅, 王彬文, 杨宇, 等. 基于遗传算法的机翼柔性蒙皮全参数优化设计[J]. 应用力学学报, 2020, 37(2):617-623, 931. Lü S S, WANG B W, YANG Y, et al. Normal optimization design of flexible skin of airfoil based on genetic algorithm[J]. Chinese Journal of Applied Mechanics, 2020, 37(2):617-623, 931(in Chinese). [6] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7):271-278. [7] 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1):144-163. WANG B W, YANG Y, QIAN Z S, et al. Technical development of variable camber wing:Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):144-163(in Chinese). [8] 刘谦, 杨玉岭. 欧美变形机翼技术发展追踪[J]. 国际航空, 2020(5):61-64. LIU Q, YANG Y L. Morphing wing technology in the US and Europe[J]. International Aviation, 2020(5):61-64(in Chinese). [9] 朱华, 刘卫东, 赵淳生. 变体飞行器及其变形驱动技术[J]. 机械制造与自动化, 2010, 39(2):8-14, 125. ZHU H, LIU W D, ZHAO C S. Morphing aircraft and its morph-driving techniques[J]. Machine Building & Automation, 2010, 39(2):8-14, 125(in Chinese). [10] 乐挺, 王立新, 艾俊强. 变体飞机设计的主要关键技术[J]. 飞行力学, 2009, 27(5):6-10. YUE T, WANG L X, AI J Q. Key technologies in morphing aircraft design[J]. Flight Dynamics, 2009, 27(5):6-10(in Chinese). [11] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5):36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection wing[J]. Aeronautical Science & Technology, 2020, 31(5):36-43(in Chinese). [12] KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL smart structures and materials development-smart wing contract[C]//CROWE R C. Smart Structures and Materials 1996:Industrial and Commercial Applications of Smart Structures Technologies. San Diego:Society of Photo-Optical Instrumentation Engineers (SPIE), 1996. [13] MILLER E J, LOKOS WA, CRUZ J, et al. Approach for structurally clearing an adaptive compliant trailing edge flap for flight:DFRC-E-DAA-TN24640[R] Washington, D.C.:NASA, 2015. [14] CAMPANILE L F, ANDERS S. Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils[J]. Aerospace Science and Technology, 2005, 9(1):55-63. [15] MONNER H P, SACHAU D, BREITBACH E. Design aspects of the elastic trailing edge for an adaptive wing:AC/323(AVT)TP/17[R]. Ottawa:Canada Communication Group Inc. (A St. Joseph Corporation Company), 2000. [16] RISSE K, ANTON E, LAMMERING T, et al. An integrated environment for preliminary aircraft design and optimization:AIAA-2012-1675[R]. Reston:AIAA, 2012. [17] RICCI S, SCOTTI A, TERRANEO M. Design, manufacturing and preliminary test results of an adaptive wing camber model:AIAA-2006-2043[R]. Reston:AIAA, 2006. [18] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7):271-278. [19] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8):19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8):19-22(in Chinese). [20] SUN J, GONG X B, LIU Y J, et al. Variable camber wing based on shape memory polymer skin:AIAA-2013-1919[R]. Reston:AIAA, 2013. [21] RIVERO A E, WEAVER P M, COOPER J E, et al. Structural modeling of compliance-based camber morphing structures under transverse shear loading[J]. AIAA Journal, 2020, 58(11):4941-4951. [22] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9):2008-2026. [23] KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft:requirements, concepts, and payoffs[C]//JAYANTH N K, KARI A, CRAIG B, et al. Smart Structures and Materials 1995:Industrial and Commercial Applications of Smart Structures Technologies. San Diego:Society of Photo-Optical Instrumentation Engineers (SPIE), 1995. [24] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing:AIAA-2007-1709[R]. Reston:AIAA, 2007. |