航空学报 > 2023, Vol. 44 Issue (17): 328116-328116   doi: 10.7527/S1000-6893.2023.28116

基于多要素改进NSGA-Ⅱ的小直径制导炸弹空面打击最优火力分配方法

毕文豪(), 周久力, 段晓波, 张安, 徐双飞   

  1. 西北工业大学 航空学院,西安  710072
  • 收稿日期:2022-10-14 修回日期:2022-11-16 接受日期:2023-02-21 出版日期:2023-09-15 发布日期:2023-03-03
  • 通讯作者: 毕文豪 E-mail:biwenhao@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(61903305);中央高校基本科研业务费专项资金(HXGJXM202214)

Optimal fire distribution method of small diameter guided bomb in air-to-surface strike based on multi-factor modified NSGA-Ⅱ

Wenhao BI(), Jiuli ZHOU, Xiaobo DUAN, An ZHANG, Shuangfei XU   

  1. School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
  • Received:2022-10-14 Revised:2022-11-16 Accepted:2023-02-21 Online:2023-09-15 Published:2023-03-03
  • Contact: Wenhao BI E-mail:biwenhao@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(61903305);Fundamental Research Funds for the Central Universities(HXGJXM202214)

摘要:

为了最大化提升小直径制导炸弹对面积目标的打击效率,提出基于多要素改进的非支配排序遗传算法的小直径制导炸弹空面打击最优火力分配方法。考虑制导炸弹的误差散布,运用网格法建立了单枚制导炸弹的打击效率评定模型,从而在此基础上建立了多枚制导炸弹的最优火力分配模型;构建了打击效率最大和用弹量最小的优化目标函数,建立了制导炸弹的最优火力分配模型。通过引入概率选择算子、混合交叉算子、改进精英保留策略对NSGA-Ⅱ算法中的多要素进行改进,增强算法的全局搜索能力,提升算法性能。仿真结果表明,MFM-NSGA-Ⅱ算法能够获得有效的小直径制导炸弹最优火力分配方案,最优火力分配结果对应的用弹量随场景参数的变化而改变,并且本文方法求解质量优于原NSGA-II算法和多目标粒子群算法。

关键词: 小直径制导炸弹, 面积目标, 火力分配, 多目标优化, NSGA-Ⅱ

Abstract:

To maximize their strike efficiency against area targets, this paper proposes an optimal firepower allocation method for small diameter guided bombs in air-to-surface strike based on Multi-Factors Modified Non-Dominated Sorting Genetic Algorithm-II (MFM-NSGA-II). Considering the error dispersion of the guided bomb, an evaluation model of the strike efficiency of a single guided bomb is established by using the grid method. On this basis, the optimal fire distribution model of multiple guided bombs is established. The optimization objective function for the maximum strike efficiency and the minimum amount of ammunition is constructed, and the optimal fire distribution model of the guided bomb is established. By introducing the probability selection operator, hybrid crossover operator and improved elite retention strategy, the multi-factors in Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) are improved to enhance the global search ability of the algorithm and improve the performance of the algorithm. The simulation results show that the MFM-NSGA-II can obtain an effective optimal firepower allocation scheme for small diameter guided bombs. The amount of ammunition corresponding to the optimal firepower allocation result changes with the change of scene parameters, and the solution quality of the proposed method is better than that of the original NSGA-II and multi-objective particle swarm optimization.

Key words: small diameter guided bomb, area target, fire distribution, multiobjective optimization, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

中图分类号: