[1] 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学:技术科学, 2011, 41(6):790-798. WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Science China:Tech Sci, 2011, 41(6):790-798(in Chinese). [2] 刘智益, 王晓东, 康顺. 多元多项式混沌法在随机方腔流动模拟中的应用[J]. 工程热物理学报, 2012, 33(3):419-422. LIU Z Y, WANG X D, KANG S. Application of multi-dimensional polynomial chaos on numerical simulations of stochastic cavity flow[J]. Journal of Engineering Thermophysics, 2012, 33(3):419-422(in Chinese). [3] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 北京:清华大学出版社, 2005:211-212. ZHANG Z S, CUI G X, XU C X. Theory and modeling of turbulence[M]. Beijing:Tsinghua University Press, 2005:211-212(in Chinese). [4] FISHMAN G. Monte carlo:Concepts, algorithms and applications[M]. New York:Springer, 1996. [5] GHANEM R, SPANOS P. Stochastic finite elements:A spectral approach[M]. New York:Springer, 1938. [6] XIU D, KARNIADAKIS G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644. [7] LE MAITRE O P, KNIO O, HABIB N N, et al. A stochastic projection method for fluid flow I. Basic formulation[J]. Journal of Computational Physics, 2001, 173:481-511. [8] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187:137-167. [9] LACOR C, SMIRNOV S. Uncertainty propagation in the solution of compressible Navier-Stokes equations using polynomial chaos decomposition[C]//NATO RTO AVF-147 Symposium on Computational Uncertainty in Military Vehide Design, 2007. [10] 王晓东, 康顺. 多项式混沌法求解随机Burgers方程[J]. 工程热物理学报, 2010, 31:393-398. WANG X D, KANG S. Solving stochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31:393-398(in Chinese). [11] ELDRED M S. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design:AIAA-2009-2274[R]. Reston, VA:AIAA, 2009. [12] HOSDER S, WALTERS RW, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12):2721-2730. [13] 张伟, 王小永, 于剑, 等. 来流导致的高超声速气动热不确定度量化分析[J]. 北京航空航天大学学报, 2018, 44(5):1102-1109. ZHANG W, WANG X Y, YU J, et al. Uncertainty quantification analysis in hypersonic aerothermodynamics due to freestream[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1102-1109(in Chinese). [14] 刘全, 王瑞利, 林忠, 等. 爆轰计算JWL状态方程参数不确定度研究[J]. 爆炸与冲击, 2013, 33(6):647-654. LIU Q, WANG R L, LIN Z, et al. Uncertainty quantification for JWL EOS parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6):647-654(in Chinese). [15] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60:897-936. [16] GHANEM R G, SPANOS P D. Stochastic finite elements:A spectral approach[M]. revised edition. New York:Dover Publications, 2003. [17] HOSDER S, WALTERS R W, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple input uncertain variables:AIAA-2007-1939[R]. Reston, VA:AIAA, 2007. [18] SOBOL I. Sensitivity estimates for nonlinear mathematical models[J]. Math Modeling & Computing Experiment, 1993, 1:407-414. [19] 胡军, 张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1):1-13. HU J, ZHANG S D. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Phsics, 2016, 33(1):1-13(in Chinese). [20] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment:AGARD-1979-0138[R]. Paris:AGARD, 1979. [21] CHEN J T, ZHANG Y B, ZHOU N C et al. Numerical investigations of the high-lift configuration with mflow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062. [22] DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite volume discretizations:Inviscid fluxes[J]. AIAA Journal, 2011, 49(4):836-854. [23] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady-state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993. [24] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992. [25] BARDINA J E, HUANG P G, COAKLEY T J. Turbulence modeling validation testing and development[R]. Washington, D.C.:NASA, 1997. [26] 张志雄. 基于结构系综的湍流复杂系统研究[D]. 北京:北京大学, 2009:80-81. ZHANG Z X. Complex system study of turbulence based on sructural ensemble[D]. Beijing:Peking University, 2009:80-81(in Chinese). [27] SHIVSAI A D, RAMESH O N. Pressure-gradient-dependent logarithmic laws in sink flow turbulent boundary layers[J]. Journal of Fluid Mechanics, 2008, 615:445-475. [28] NAGIB H M, CHAUHAN K A. Variations of von Karman coefficient in canonical flows[J]. Physics of Fluids, 2008, 20:101518. [29] FRENZEN P, VOGEL C A. On the magnitude and apparent range of variation of the von Karman constant in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1995, 72(4):371-392. [30] ANDREAS E L, CLAFFEY K J, JORDAN R E, et al. Evaluations of the von Karman constant in the atmospheric surface layer[J]. Journal of Fluid Mechanics, 2006, 559:117-149. [31] SHE Z S, WU Y, CHEN X, et al. A multi-state description of roughness effects in turbulent pipe flow[J]. New Journal Physics, 2012, 14:54-93. [32] WU Y, CHEN X, SHE Z S, et al. On the Karman constant in turbulent channel flow[J]. Physics Scripta, 2013, 21(3):9-14. [33] SCHAEFER J, WEST T, HOSDER S, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows:AIAA-2015-2461[R]. Reston, VA:AIAA, 2015. |