[1] 李锋, 白鹏, 石文, 等. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2):257-268. LI F, BAI P, SHI W, et al. Micro air vehicle aerodynamics at low Reynolds number[J]. Advances in Mechanics, 2007, 37(2):257-268(in Chinese). [2] 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小迎角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the non-linearl ift coefficient of the symmetric airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese). [3] MUNDAY P M, TAIRA K, SUWA T, et al. Nonlinear lift on a triangular airfoil in low-Reynolds number compressible flow[J]. Journal of Aircraft, 2015, 52(3):924-931. [4] MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis[J]. Journal of Aircraft, 2985, 22(9):763-770. [5] YANG Z, IGARASHI H, MARTIN M, et al. An experimental investigation on aerodynamic hysteresis of a low Reynolds number airfoil:AIAA-2008-0315[R]. Reston, VA:AIAA, 2008. [6] GASTER M. The structure and behavior of laminar separation bubbles:AGARD CP-4[R]. Paris:AGARD, 1966:813-854. [7] HORTON H P. Laminar separation bubbles in two-and three-dimensional incompressible flow[D]. London:University of London, 1968:25-62. [8] SELIG S M, GUGLIELMO J J, BROEREN A P, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston, VA:AIAA, 1996. [9] BREHM C, MACH S, GROSS A, et al. Investigations of an airfoil at low Reynolds number conditions[C]//4th AIAA Flow Control Conference. Reston, VA:AIAA, 2008:3765. [10] GROSS A, FASEL H F. Numerical investigation of separation for airfoils at low Reynolds numbers[C]//40th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2010:4736. [11] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学:物理学力学天文学, 2015, 45(2):024703. BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low icidence[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(2):024703(in Chinese). [12] 刘强, 刘强, 白鹏, 等. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4):120338. LIU Q, LIU Q, BAI P, et al. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120338(in Chinese). [13] SHAN H, JIANG L, LIU C. Direct numerical simulation of flow separation around a NACA 0012 airfoil[J]. Computers and Fluids, 2005, 34(9):1096-1114. [14] GALBRAITH C M, VISBAL R M. Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil:AIAA-2008-0225[R]. Reston, VA:AIAA, 2008. [15] KOJIMA R, NONOMURA T, OYAMA A, et al. Large-eddy simulation of low-reynolds-number flow over thick and thin NACA airfoils[J]. Journal of Aircraft, 2013, 50(1):187-196. [16] XU C, CHEN L, LU X. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665:238-273. [17] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4):199-228. [18] GAMIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Berlin:Springer, 2009:93. [19] LIU M S. Progress towards an improved CFD method:AUSM+:AIAA-1995-1701[R]. Reston, VA:AIAA, 1995. [20] LIU X, OSHER S, CHAN T. Weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 1994, 115(1):200-212. [21] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. [22] ANTONY J. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]//AIAA 10th Computational Fluid Dynamics Conference. Reston, VA:AIAA, 1991:1596. [23] OL V M, MCAULIFFE R B, HANFF S E, et al. Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2005:5149. |