[1] ASGARI H, VENTURINI M, CHEN X Q, et al. Modeling and simulation of the transient behavior of an industrial power plant gas turbine[J]. Journal of Engineering for Gas Turbines and Power, 2014, 7(2): 13-24. [2] POGORELOV G I, KULIKOV G G, ABDULNAGIMOV A I, et al. Application of neural network technology and high-performance computing for identification and real-time hardware-in-the-loop simulation of gas turbine engines[J]. Procedia Engineering, 2017, 176: 402-408. [3] 陈超, 王剑影. 基于RBF神经网络的航空发动机起动模型辨识与仿真[J]. 燃气涡轮试验与研究, 2005, 18(1): 17-26. CHEN C, WANG J Y. Identification and simulation of an engine start model based on RBF neural networks[J]. Gas Turbine Experiment and Research, 2005, 18(1): 17-26 (in Chinese). [4] 李应红, 刘建勋. 基于支持向量机的涡扇发动机起动性能估算研究[J]. 航空学报, 2005, 26(1): 32-35. LI Y H, LIU J X. Turbofan engine starting characteristics estimation based on support vector machines[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 32-35 (in Chinese). [5] 王冠超, 杨春, 徐波, 等. 基于改进PSO-SVM参数优化的发动机起动过程辨识[J]. 燃气涡轮试验与研究, 2011, 24(1): 35-41. WANG G C, YANG C, XU B, et al. Engine start identification based on parameter optimization of improved PSO-SVM[J]. Gas Turbine Experiment and Research, 2011, 24(1): 35-41 (in Chinese). [6] 焦洋, 李秋红, 朱正琛, 等. 基于ADE-ELM的涡轴发动机建模方法[J]. 航空动力学报, 2016, 31(4): 965-973. JIAO Y, LI Q H, ZHU Z C, et al. Turbo-shaft engine modeling method based on ADE-ELM[J]. Journal of Aerospace Power, 2016, 31(4): 965-973 (in Chinese). [7] HUANG G B, DING X, ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1-3): 155-163. [8] LIU N, WANG H. Ensemble based extreme learning machine[J]. IEEE Signal Processing Letters, 2010, 17(8): 754-757. [9] DENG C W, HUANG G B, JIA X U, et al. Extreme learning machines: New trends and applications[J]. Science China Information Sciences, 2015, 58(2): 1-16. [10] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [11] HUANG G B. What are extreme learning machines? Fill ing the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle[J]. Cognitive Computation, 2015, 7(3): 263-278. [12] 范庚, 马登武. 基于组合优化相关向量机的航空发动机性能参数概率预测方法[J]. 航空学报, 2013, 34(9): 2110-2121. FAN G, MA D W. Probalistic prediction method for aeroengine performance parameters based on combined optimum relevance vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2110-2121 (in Chinese). [13] ZHANG J, XIA P Q. An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models[J]. Journal of Sound and Vibration, 2017, 389: 153-167. [14] SATO M, FUKUYAMA Y. Total optimization of smart community by differential evolutionary particle swarm optimization[J]. International Federation of Automatic Control, 2017, 50(1): 201-206. [15] 逄珊, 杨欣毅, 林学森. 一种基于量子粒子群优化的极限学习机[J]. 系统仿真学报, 2017, 29(10): 2447-2458. PANG S, YANG X Y, LIN X S. Evolutionary extreme learning machine optimized by quantum-behaved particle swarm optimization[J]. Journal of System Simulation, 2017, 29(10): 2447-2458 (in Chinese). [16] YANG X Y, PANG S, SHEN W, et al. Aero-engine fault diagnosis using an optimized extreme learning machine[J]. International Journal of Aerospace Engineering, 2016, 2016: 7892875. [17] YANG X Y, SHEN W, PANG S, et al. A novel gas turbine engine health status estimation method using quantum-behaved particle swarm optimization[J]. Mathematical Problems in Engineering, 2014, 2014: 302514. [18] JIANG T Y, LI J, HUANG K W. Longitudinal parameter identification of a small unmanned aerial vehicle based on modified particle swarm optimization[J]. Chinese Journal of Aeronautics, 2015, 28(3): 865-873. [19] 宋汉强, 李本威, 张赟, 等. 基于聚类与粒子群极限学习机的航空发动机推力估计器设计[J]. 推进技术, 2017, 38(6): 1379-1385. SONG H Q, LI B W, ZHANG Y, et al. Aero-engine thrust estimator design based on clustering and particle swarm optimization extreme learning machine[J]. Journal of Propulsion Technology, 2017, 38(6): 1379-1385 (in Chinese). [20] 邵干, 张曙光, 唐鹏. 小型无人机气动参数辨识的新型HGAPSO算法[J]. 航空学报, 2017, 38(4): 120365. SHAO G, ZHANG S G, TANG P. HGAPSO: A new aerodynamic parameters identification algorithm for small unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120365 (in Chinese). [21] SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior[C]//Proceeding of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2004: 325-331. [22] 樊思齐, 刘清波, 荣向军, 等. 利用飞行试验信号对发动机模型辨识的研究[J]. 航空学报, 1993, 14(8): 399-423. FAN S Q, LIU Q B, RONG X J. Identification investigation of engine model using flight test signals[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(8): 399-423 (in Chinese). |