[1] 王玉莹, 钟奇, 宁献文, 等. 水升华器空间应用研究[J]. 航天器工程, 2013, 22(3):105-112. WANG Y Y, ZHONG Q, NING X W, et al. Overview of space application and development of water sublimator[J]. Spacecraft Engineering, 2013, 22(3):105-112(in Chinese). [2] 丰茂龙, 黄家荣, 范含林, 等. 美国舱外航天服热控技术研究进展[J]. 载人航天, 2011, 16(3):36-41. FENG M L, HUANG J R, FAN H L, et al. Development of thermal control technology of extravehicular spacesuit of the U.S.[J]. Manned Spaceflight, 2011, 16(3):36-41(in Chinese). [3] GRAUMANN D W. Research study on instrument unit thermal conditioning heat sink concepts annual report:NAS8-11291[R]. Washington, D.C.:NASA, 1968. [4] TONGUE S, DINGELL C W. The porous plate sublimator as the X-38/CRV (Crew Return Vehicle) orbital heat sink[C]//27th International Conference on Environmental Systems, 1997:1-5. [5] LEWIS J F, BARIDO R A. Crew exploration vehicle environmental control and life support development status:AIAA-2010-6154[R]. Reston, VA:AIAA, 2010. [6] SKOOG A I, ABRAMOV I P, STOKLITSKY A Y, et al. The Soviet-Russian space suits a historical overview of the 1960's[J]. Acta Astronautic, 2002, 51(1-9):113-131. [7] METTS J G, KLAUS D M. Equivalent system mass analysis for space suit thermal control:AIAA-2011-5180[R]. Reston, VA:AIAA, 2011. [8] Hamilton Standard, Windsor Locks, Conn. Phase 1 engineering and technical data report for the thermal control extravehicular life support system:N75-24360[R]. 1975. [9] CHAPMAN A J. A fundamental study of sublimation through a porous surface:NASA 9-7969[R]. Washington, D.C.:NASA, 1971. [10] LEIMKUEHLER T O, ANDERSON M S,WESTHEIMER D T. Development of a contaminant insensitive sublimator[C]//36th International Conference on Environmental Systems, 2006. [11] SHETH R B, STEPHAN R A, LEIMKUEHLER T O. Testing and model correlation of sublimator driven coldplate coupons and EDU[C]//39th International Conference on Environmental Systems, 2009. [12] 吴志强, 袁修干, 沈力平. 水升华器散热系统分析[J]. 航空学报, 1999, 20(Suppl.):17-19. WU Z Q, YUAN X G, SHEN L P. Analysis of water sublimator heat rejection systems[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Suppl.):17-19(in Chinese). [13] 吴志强, 袁修干, 韩力军, 等. 多孔板水升华器试验研究[J]. 中国空间科学技术, 2000, 20(2):54-60. WU Z Q, YUAN X G, HAN L J, et al. An experimental investigation on porous plate water sublimator[J]. Chinese Space Science and Technology, 2000, 20(2):54-60(in Chinese). [14] 吴志强, 袁修干. 多孔板水升华器在恒热流条件下的试验研究[J]. 北京航空航天大学学报, 2000, 26(5):552-555. WU Z Q, YUAN X G. Experimental investigation on porous plate water sublimator under constant heat flux[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5):552-555(in Chinese). [15] 吴志强, 沈力平. 憎水涂层多孔板对水升华器散热性能影响的实验研究[J]. 航天医学与医学工程, 2003, 16(4):287-291. WU Z Q, SHEN L P. Experimental research on the effects of hydrophobic coating porous plates on heat dissipation of water sublimator[J]. Space Medicine & Medical Engineering, 2003, 16(4):287-291(in Chinese). [16] WANG Y Y, ZHONG Q, NING X W, et al. Transient study about the heat transfer of sublimator combined with fluid loop[C]//64th International Astronautical Congress, 2013. [17] 王玉莹, 钟奇, 宁献文, 等. 具有恒热流边界的水升华器启动特性实验[J]. 航空学报, 2014, 35(6):1571-1580. WANG Y Y, ZHONG Q, NING X W, et al. Experiment on startup performance of sublimator with constant heat flux boundary[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1571-1580(in Chinese). [18] WANG Y Y, ZHONG Q, LI J D, et al. Numerical and experimental study on the heat and mass transfer of porous plate water sublimator with constant heat flux boundary condition[J]. Applied Thermal Engineering, 2014, 67:469-479. [19] 刘畅, 苗建印, 何江, 等. 结构参数对水升华器散热性能影响的研究[J]. 航天器工程, 2016, 25(3):57-62. LIU C, MIAO J Y, HE J, et al. Research on effects of structure parameters on heat dissipation of water sublimator[J]. Spacecraft Engineering, 2016, 25(3):57-62(in Chinese). [20] 王建永, 汤慧萍, 朱纪磊, 等. 孔隙度对烧结不锈钢纤维多孔材料压缩性能的影响[J]. 粉末冶金技术, 2009,27(5):323-326. WANG J Y, TANG H P, ZHU J L, et al. Effect of porosity on compressive properties of porous sintered stainless steel fiber media[J]. Powder Metallurgy Technology, 2009, 27(5):323-326(in Chinese). [21] 许飞, 焦磊, 张娟. 烧结316L不锈钢粉末多孔材料拉伸性能的研究[J]. 西安文理学院学报:自然科学版, 2012, 15(3):61-65. XU F, JIAO L, ZHANG J. A study on tensile properties of sintered 316L stainless steel powder porous materials[J]. Journal of Xi'an University of Arts & Science:Natural Science Edition, 2012, 15(3):61-65(in Chinese). [22] 许飞, 焦磊, 张娟. 烧结316L不锈钢粉末多孔材料压缩性能的研究[J]. 西安文理学院学报:自然科学版, 2015, 18(2):83-87. XU F, JIAO L, ZHANG J. Research on compression properties of sintered 316L stainless steel powders porous materials[J]. Journal of Xi'an University of Arts & Science:Natural Science Edition, 2015, 18(2):83-87(in Chinese). [23] 白莉, 王有镗, 高青, 等. 地下换热管土结构冻胀变形模拟[J]. 农业工程学报, 2016, 32(18):118-124. BAI L, WANG Y T, GAO Q, et al. Simulation on underground pipe-soil heat exchange structure deformation due to frost heave[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18):118-124(in Chinese). [24] 康永水, 刘泉声, 赵军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12):2518-2526. KANG Y S, LIU Q S, ZHAO J, et al. Research on frost deformation characteristics of rock and simulation of tunnel frost deformation in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12):2518-2526(in Chinese). |