[1] 丛茜, 封云, 任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展, 2006, 21(2):232-238. CONG Q, FENG Y, REN L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics, 2016, 21(2):232-238(in Chinese).[2] CHOI K S. Turbulence control by passive means[M]. 1990:109-121.[3] SUZUKI Y, KASAGI N. Turbulent drag reduction mechanism above a riblet surface[J]. AIAA Journal, 1994, 32(9):1781-1790.[4] DEAN B, BHUSHAN B H. Shark-skin surfaces for fluid-drag reduction in turbulent flow:A review[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1929):4775-4806.[5] JUNG Y C, BHUSHAN B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows[J]. Journal of Physics:Condensed Matter:an Institute of Physics Journal, 2010, 22(3):035104.[6] WALSH M J, LINDEMANN A M. Optimization and application of riblets for turbulent drag reduction[M]. Reston, VA:AIAA, 1984.[7] 张成春, 任露泉, 刘庆平, 等. 旋成体仿生凹坑表面减阻试验研究[J]. 空气动力学学报, 2008, 26(1):79-84. ZHANG C C, REN L Q, LIU Q P, et al. Experimental study on bionic dimpled surfaces of bodies of revolution for drag reduction[J]. Acta Aerodynamica Sinica, 2008, 26(1):79-84(in Chinese).[8] DANCE B G I. Surface modification:USA. WO/2002/094497 A3[P].2002-11-28.[9] DANCE B G I, KELLAR E J C. Workpiece structure modification:USA. WO/2004/028731 A1[P]. 2004-04-08.[10] BLACKBURN J E, HILTON P A. Low power laser surfi-sculpt[J]. Rare Metal Materials and Engineering, 2011, 40(S4):147-150.[11] EARL C, HILTON P, O'NEILL B. Parameter influence on surfi-sculpt processing efficiency[J]. Physics Procedia, 2012, 39:327-335.[12] XU H, ZHAO H, WANG X, et al. Computational fluid dynamics simulation of electron beam surfi-sculpt process[J]. Rare Metal Materials and Engineering, 2013, 42(S2):155-158.[13] XIONG W, BLACKMAN B, DEAR J P, et al. The effect of composite orientation on the mechanical properties of hybrid joints strengthened by surfi-sculpt[J]. Composite Structures, 2015, 134:587-592.[14] 余伟, 王西昌, 巩水利, 等. 快速扫描电子束加工技术及其在航空制造领域的潜在应用[J]. 航空制造技术, 2010(16):44-47. YU W, WANG X C, GONG S L, et al. Electron beam processing technology and its potential application within aviation industry[J]. Aeronautical Manufacturing Technology, 2010(16):44-47(in Chinese).[15] BUXTON A L, DANCE B G I. The potential of EB surface processing within the aero-space industry[J]. Rare Metal Materials and Engineering, 2011, 40(S4):155-159.[16] WANG X, GONG S, GUO E, et al. Primary study on electron beam surfi-sculpt of Ti-6Al-4V[J]. Advanced Materials Research, 2012, 418-420:772-776.[17] WANG X, GUO E, GONG S, et al. Realization and experimental analysis of electron beam surfi-sculpt on Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2014, 43(4):819-822.[18] WANG X, AHN J, BAI Q, et al. Effect of forming parameters on electron beam Surfi-Sculpt protrusion for Ti-6Al-4V[J]. Material and Design, 2015, 76:202-206.[19] LI K, WANG X, FU P, et al. Investigation of forming process during electron beam Surfi-SculptTM[J]. Electrontechnica & Electronica, 2016, 51(5-6):48-53.[20] LI K. Origins and evolution of near-surface microstructures and their influence on the optical property of AA3104 aluminium alloy[D]. Manchester:The University of Manchester, 2013.[21] LI K, FU P, TANG D, et al. Electron beam processed surface textures on titanium alloys for fluid-drag reduction[J/OL]. International Journal of Advanced Manufacturing Technology, (2017-06-22)[2017-08-08]. http://link.springer.com/article/10.1007/s00170-017-0619-0.[22] LI K, FU P, WU B, et al. Formation mechanisms of electron beam processed surface textures on titanium alloys[J]. Advances in Engineering Research, 2017, 102(2):379-384.[23] LI K, ZHOU X, THOMPSON G, et al. Evolution of near-surface deformed layers on AA3104 aluminium alloy[J]. Materials Science Forum, 2013, 765:358-362.[24] SCHULTZ H. Electron beam welding[M]. 1994. |