王茂松, 杜宇雷
收稿日期:
2021-01-14
修回日期:
2021-02-02
发布日期:
2021-03-18
通讯作者:
杜宇雷
E-mail:yldu_njust@njust.edu.cn
基金资助:
WANG Maosong, DU Yulei
Received:
2021-01-14
Revised:
2021-02-02
Published:
2021-03-18
Supported by:
摘要: 钛铝合金具有轻质、高强、耐高温等优异特性,在航空领域,特别是在航空发动机涡轮叶片上具有重要应用价值。然而,钛铝合金的室温脆性大、热变形能力低,使得采用传统的锻造、精密铸造、粉末冶金等技术均难以制造具有复杂形状,特别是具有内部空腔结构的钛铝合金叶片,限制了其性能的进一步提升。增材制造技术能够突破形状的制约,有望发展成为制造钛铝合金复杂结构零部件的新技术。目前,应用于钛铝合金的增材制造技术主要有电子束选区熔化、选区激光熔化和激光金属沉积。本文调研了增材制造钛铝合金领域2010~2020年的文献,对上述3类增材制造技术的原理和特性、所使用合金粉末的特性、打印构件的相组成、组织形貌和热处理工艺、宏观和微观力学性能及其在航空领域的应用等研究进行了对比分析和评述,并对增材制造钛铝合金发展中所存在的问题及下一步研发重点进行了总结和探讨。
中图分类号:
王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7): 625263-625263.
WANG Maosong, DU Yulei. Research progress of additive manufacturing of TiAl alloys[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 625263-625263.
[1] 张永刚, 陈昌麒. 钛铝金属间化合物基合金中的孪生与孪生交互作用[J]. 航空学报, 2000, 21(增刊1):51-55. ZHANG Y G, CHEN C Q. Twinning and twin interactionsin γ-TiAl base alloys[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(Sup1):51-55(in Chinese). [2] WU X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10-11):1114-1122. [3] 荣科. 高温合金涡轮叶片材料的现状与发展[J]. 航空学报, 1985, 6(3):201-207. YUNG K. State-of-art and prospects of casting turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 1985, 6(3):201-207(in Chinese). [4] XI X X, DING W F, WU Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels[J]. Chinese Journal of Aeronautics, 2021, 34(6):100-109. [5] JANSCHEK P. Wrought TiAl blades[J]. Materials Today:Proceedings, 2015, 2(Sup1):92-97. [6] CHEN W, LI Z Q. Additive manufacturing of titanium aluminides[M]//Additive Manufacturing for the Aerospace Industry. Amsterdam:Elsevier, 2019:235-263. [7] 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147. YANG R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2):129-147(in Chinese). [8] DOWLING W E JR, DONLON W T JR. The effect of surface film formation from thermal exposure on the ductility of Ti-48Al-1V-0.2C (at%)[J]. Scripta Metallurgica et Materialia, 1992, 27(11):1663-1668. [9] BEWLAY B P, WEIMER M, KELLY T, et al. The science, technology, and implementation of TiAl alloys in co mmercial aircraft engines[J]. MRS Online Proceedings Library, 2013, 1516:49-58. [10] CHEN G, PENG Y B, ZHENG G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8):876-881. [11] XIN J J, ZHANG L Q, GE G W, et al. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of Niobium using constitutive equation and power dissipation map[J]. Materials & Design, 2016, 107:406-415. [12] TETSUI T, SHINDO K, KOBAYASHI S, et al. Strengthening a high-strength TiAl alloy by hot-forging[J]. Intermetallics, 2003, 11(4):299-306. [13] YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4):826-836. [14] AI T T. Microstructure and mechanical properties of in situ synthesized Al2O3/TiAl composites[J]. Chinese Journal of Aeronautics, 2008, 21(6):559-564. [15] TANG S Q, FENG C, SHEN J. Enhanced oxidation resistance of TiAlNbCr processed by isothermal forging[J]. Journal of Alloys and Compounds, 2020, 813:152174. [16] QIAO H C, ZHAO J B, GAO Y. Experimental investigation of laser peening on TiAl alloy microstructure and properties[J]. Chinese Journal of Aeronautics, 2015, 28(2):609-616. [17] BARBOSA J, RIBEIRO C S, MONTEIRO A C. Influence of superheating on casting of γ-TiAl[J]. Intermetallics, 2007, 15(7):945-955. [18] WANG D J, ZHAO H G, ZHENG W. Effect of temperature-related factors on densification, microstructure and mechanical properties of powder metallurgy TiAl-based alloys[J]. Advanced Powder Technology, 2019, 30(11):2555-2563. [19] XU W C, JIN X Z, HUANG K, et al. Improvement of microstructure, mechanical properties and hot workability of a TiAl-Nb-Mo alloy through hot extrusion[J]. Materials Science and Engineering:A, 2017, 705:200-209. [20] 孙瑞杰, 闫晓军, 聂景旭. 定向凝固涡轮叶片高温低周疲劳的破坏特点[J]. 航空学报, 2011, 32(2):337-343. SUN R J, YAN X J, NIE J X. Failure characteristics of directional solidification turbine blade under high temperature low cycle fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):337-343(in Chinese). [21] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese). [22] 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1):46-51. DING Y, CHANG H P. Analysis of turbine blade cooling effectiveness[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):46-51(in Chinese). [23] 周君辉, 张靖周. 气膜孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响[J]. 航空学报, 2016, 37(9):2729-2738. ZHOU J H, ZHANG J Z. Effects of partial blockage inside film holes on overall cooling effectiveness of an integrated impingement-fin-film cooling configuration on blade pressure side[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2729-2738(in Chinese). [24] 游良平, 陶毓伽, 蔡军, 等. 涡轮叶片前缘复合冷却实验[J]. 航空学报, 2009, 30(9):1618-1623. YOU L P, TAO Y J, CAI J, et al. Experiment of composite cooling on leading edge of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1618-1623(in Chinese). [25] 曹志廷, 郭文, 潘炳华, 等. 涡轮叶片冷却设计优化方法研究[J]. 燃气涡轮试验与研究, 2012, 25(4):30-36. CAO Z T, GUO W, PAN B H, et al. Optimization of turbine blade cooling design with iSIGHT[J]. Gas Turbine Experiment and Research, 2012, 25(4):30-36(in Chinese). [26] 鲁中良, 周江平, 杨东升, 等. 基于3D打印技术的预研涡轮叶片精铸蜡型快速制造方法[J]. 航空学报, 2015, 36(2):651-660. LU Z L, ZHOU J P, YANG D S, et al. Rapid fabricationmethod of pre-research turbine blade wax precision mould based on 3D printing technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):651-660(in Chinese). [27] GUANG M, BIN J, HAN H, et al. Design and simulation of an innovative cylinder fabricated by selective laser melting[J]. Chinese Journal of Aeronautics, 2019, 32(1):133-142. [28] SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020, 33(4):1252-1259. [29] ZHENG L J, LIU Y Y, SUN S B, et al. Selective laser melting of Al-8.5Fe-1.3V-1.7Si alloy:Investigation on the resultant microstructure and hardness[J]. Chinese Journal of Aeronautics, 2015, 28(2):564-569. [30] ZHOU Y H, LI W P, WANG D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic:Excellent combination of strength and ductility, and unique microstructural features associated[J]. Acta Materialia, 2019, 173:117-129. [31] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [32] 张琛, 杨森, 颜银标. TiAl基合金成形技术的研究现状[J]. 兵器材料科学与工程, 2017, 40(4):126-132. ZHANG C, YANG S, YAN Y B. Research progress in manufacturing of TiAl alloys[J]. Ordnance Material Science and Engineering, 2017, 40(4):126-132(in Chinese). [33] 王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机, 2020, 50(4):1-12, 136. WANG L, SHEN C, ZHANG C, et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology[J]. Electric Welding Machine, 2020, 50(4):1-12, 136(in Chinese). [34] 汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3):225-235. TANG H P, WANG J, LU S L, et al. Research progressin selective electron beam melting[J]. Materials China, 2015, 34(3):225-235(in Chinese). [35] 阚文斌, 林均品. 增材制造技术制备钛铝合金的研究进展[J]. 中国材料进展, 2015, 34(2):111-119, 135. KAN W B, LIN J P. Research progress on fabrication of TiAl alloys fabricated by additive manufacturing[J]. Materials China, 2015, 34(2):111-119, 135(in Chinese). [36] ANWAR S, AHMED N, PERVAIZ S, et al. On the turning of electron beam melted gamma-TiAl with coated and uncoated tools:A machinability analysis[J]. Journal of Materials Processing Technology, 2020, 282:116664. [37] MOHA MMAD A, ALAHMARI A, MOIDUDDIN K, et al. Porous γ-TiAl structures fabricated by electron beam melting process[J]. Metals, 2016, 6(1):25. [38] KARADGE M, GOUMA P I. Metastable phase formation during α2(D019) to γ (L10) transformation in as-atomized γ-TiAl alloy powders[J]. Applied Physics Letters, 2004, 85(21):4914-4916. [39] SCHUSTER J C, PALM M. Reassessment of the binary aluminum-titanium phase diagram[J]. Journal of Phase Equilibria and Diffusion, 2006, 27(3):255-277. [40] PRIARONE P C, RIZZUTI S, ROTELLA G, et al. Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(1-4):25-33. [41] SAN JUAN J, SIMAS P, SCHMOELZER T, et al. Atomic relaxation processes in an intermetallic Ti-43Al-4Nb-1Mo-0.1B alloy studied by mechanical spectroscopy[J]. Acta Materialia, 2014, 65:338-350. [42] GUPTA R K, PANT B, SINHA P P. Theory and practice of γ +α2 Ti aluminide:A review[J]. Transactions of the Indian Institute of Metals, 2014, 67(2):143-165. [43] NARAYANA P L, LI C L, KIM S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800℃[J]. Materials Science and Engineering:A, 2019, 756:41-45. [44] CHEN G L, SUN Z, XING Z. Oxidation and mechanical behavior of intermetallic alloys in the Ti-Nb-Al ternary system[J]. Materials Science & Engineering A, 1992, 153(1-2):597-601. [45] LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136:90-104. [46] VALKOV S, NEOV D, LUYTOV D, et al. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment[J]. Journal of Physics:Conference Series, 2016, 700:012034. [47] MA C L, GU D D, DAI D H, et al. Microstructure evolution and high-temperature oxidation behaviour of selective laser melted TiC/TiAl composites[J]. Surface and Coatings Technology, 2019, 375:534-543. [48] LÖBER L, SCHIMANSKY F P, KÜHN U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014, 214(9):1852-1860. [49] GREER C, NYCZ A, NOAKES M, et al. Introduction to the design rules for metal big area additive manufacturing[J]. Additive Manufacturing, 2019, 27:159-166. [50] FULLENWIDER B, KIANI P, SCHOENUNG J M, et al. Two-stage ball milling of recycled machining chips to create an alternative feedstock powder for metal additive manufacturing[J]. Powder Technology, 2019, 342:562-571. [51] 高学绪, 李纪恒, 朱洁, 等. 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10):1267-1271. GAO X X, LI J H, ZHU J, et al. Microstructure and magnetostriction of Fe-Ga powders prepared by gas atomization[J]. Acta Metallurgica Sinica, 2009, 45(10):1267-1271(in Chinese). [52] 刘文胜, 彭芬, 马运柱, 等. 工艺条件对气雾化制备SnAgCu合金粉末特性的影响[J]. 中国有色金属学报, 2009, 19(6):1074-1079. LIU W S, PENG F, MA Y Z, et al. Effect of procedure conditions on characteristics of SnAgCu alloyed powder prepared by gas atomization[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(6):1074-1079(in Chinese). [53] ENGEL B, BOURELL D L. Titanium alloy powder preparation for selective laser sintering[J]. Rapid Prototyping Journal, 2000, 6(2):97-106. [54] LIU B L, WANG M S, DU Y L, et al. Size-dependent structural properties of a high-Nb TiAl alloy powder[J]. Materials, 2020, 13(1):161-167. [55] LI W, LIU J, ZHOU Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Scripta Materialia, 2016, 118:13-18. [56] ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7):1727-1732. [57] XU J Q, ZHU J, FAN J K, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication[J]. Vacuum, 2019, 167:364-373. [58] ZHOU Y H, LIN S F, HOU Y H, et al. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting[J]. Applied Surface Science, 2018, 441:210-217. [59] WEISHEIT A, MORDIKE B L, SMARSLY W, et al. Laser surface remelting and laser surface gas alloying of an intermetallic TiAl alloy[J]. Lasers in Engineering, 2000, 10(1):63-81. [60] 李小雷, 周爱国, 汪长安,等. 自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理研究[J]. 硅酸盐学报, 2002, 30(3):407-410. LI X L, ZHOU A G, WANG C A, et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high temperature synthesis and study on mechanism of the reaction[J]. Journal of the Chinese Ceramic Society, 2002, 30(3):407-410(in Chinese). [61] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领域的应用与发展[J]. 航空制造技术, 2015, 58(11):38-42. TIAN Z J, GU D D, SHEN L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2015, 58(11):38-42(in Chinese). [62] AFKHAMI S, DABIRI M, ALAVI S H, et al. Fatigue characteristics of steels manufactured by selective laser melting[J]. International Journal of Fatigue, 2019, 122:72-83. [63] ZHANG H Y, DONG D K, SU S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V[J]. Chinese Journal of Aeronautics, 2019, 32(10):2383-2393. [64] LI W, LIU J, ZHOU Y, et al. Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process[J]. Intermetallics, 2017, 85:130-138. [65] RASTKAR A R, SHOKRI B. Surface transformation of Ti-45Al-2Nb-2Mn-1B titanium aluminide by electron beam melting[J]. Surface and Coatings Technology, 2010, 204(11):1817-1822. [66] CAO S Z, XIAO S L, CHEN Y Y, et al. Phase transformations of the L12-Ti3Al phase in γ-TiAl alloy[J]. Materials & Design, 2017, 121:61-68. [67] GUSSONE J, GARCES G, HAUBRICH J, et al. Microstructure stability of γ-TiAl produced by selective laser melting[J]. Scripta Materialia, 2017, 130:110-113. [68] GUO Y L, JIA L N, KONG B, et al. Single track and single layer formation in selective laser melting of niobium solid solution alloy[J]. Chinese Journal of Aeronautics, 2018, 31(4):860-866. [69] VRANCKEN B, CAIN V, KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87:29-32. [70] GUSSONE J, HAGEDORN Y C, GHEREKHLOO H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures[J]. Intermetallics, 2015, 66:133-140. [71] SHI X Z, WANG H X, FENG W W, et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2020, 91:105247. [72] 杨益, 党明珠, 李伟, 等. 激光选区熔化钛铝合金裂纹形成机理及抑制研究[J]. 机械工程学报, 2020, 56(3):181-188. YANG Y, DANG M Z, LI W, et al. Study on cracking mechanism and inhibiting process of TiAl alloys fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(3):181-188(in Chinese). [73] GAO P, WANG Z M, ZENG X Y. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4):355-361. [74] GAO P, HUANG W P, YANG H H, et al. Cracking behavior and control of-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting[J]. Journal of Materials Science & Technology, 2020, 39:144-154. [75] SHI X Z, MA S Y, LIU C M, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics & Laser Technology, 2017, 90:71-79. [76] SHANG C, XU G J, WANG C Y, et al. Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer[J]. Materials Letters, 2019, 252:342-344. [77] RITTINGHAUS S K, WILMS M B. Oxide dispersion strengthening of γ-TiAl by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2019, 804:457-460. [78] 刘占起, 徐国建, 马瑞鑫, 等. 激光同轴送粉增材制造TiAl合金的性能[J]. 中国激光, 2019, 46(3):146-152. LIU Z Q, XU G J, MA R X, et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding[J]. Chinese Journal of Lasers, 2019, 46(3):146-152(in Chinese). [79] SHARMAN A R C, HUGHES J I, RIDGWAY K. Characterisation of titanium aluminide components manufactured by laser metal deposition[J]. Intermetallics, 2018, 93:89-92. [80] ABDULRAHMAN K O, AKINLABI E T, MAHAMOOD R M, et al. Laser metal deposition of titanium aluminide composites:A review[J]. Materials Today:Proceedings, 2018, 5(9):19738-19746. [81] HE W W, JIA W P, LIU H Y, et al. Research on preheating of titanium alloy powder in electron beam melting technology[J]. Rare Metal Materials and Engineering, 2011, 40(12):2072-2075. [82] KLOCKE F, HERRIG T, ZEIS M, et al. Comparison of the electrochemical machinability of electron beam melted and casted gamma titanium aluminide TNB-V5[J]. Journal of Engineering Manufacture, 2018, 232(4):586-592. [83] SCHWERDTFEGER J, SINGER R F, KÖRNER C. In situ flaw detection by IR-imaging during electron beam melting[J]. Rapid Prototyping Journal, 2012, 18(4):259-263. [84] KLASSEN A, FORSTER V E, JUECHTER V, et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl[J]. Journal of Materials Processing Technology, 2017, 247:280-288. [85] TERNER M, BIAMINO S, EPICOCO P, et al. Electron beam melting of high niobium containing TiAl alloy:Feasibility investigation[J]. Steel Research International, 2012, 83(10):943-949. [86] ANWAR S, AHMED N, ABDO B M, et al. Electron beam melting of gamma titanium aluminide and investigating the effect of EBM layer orientation on milling performance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3093-3107. [87] LEE S, KIM J, CHOE J, et al. Understanding crack formation mechanisms of Ti-48Al-2Cr-2Nb single tracks during laser powder bed fusion[J]. Metals and Materials International, 2021, 27(1):78-91. [88] POLOZOV I, KANTYUKOV A, GONCHAROV I, et al. Additive manufacturing of Ti-48Al-2Cr-2Nb alloy using gas atomized and mechanically alloyed plasma spheroidized powders[J]. Materials, 2020, 13:3592-3408. [89] KAN W, CHEN B, PENG H, et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 2019, 809:151673. [90] STARK A, BARTELS A, CLEMENS H, et al. On the formation of ordered ω-phase in high Nb containing γ-TiAl based alloys[J]. Advanced Engineering Materials, 2010, 10(10):929-934. [91] JUECHTER V, SCHAROWSKY T, SINGER R F, et al. Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting[J]. Acta Materialia, 2014, 76:252-258. [92] 周俊, 周斌, 李宏新, 等. 电子束选区熔化线能量密度对钛铝合金粉末中铝元素挥发的影响[J]. 电加工与模具, 2018(4):52-56. ZHOU J, ZHOU B, LI H X, et al. Influence of line energy density of electron beam selective melting on volatilization of aluminum in TiAl alloy powders[J].Electromachining & Mould, 2018(4):52-56(in Chinese). [93] ZHOU J, LI H X, YU Y F, et al. Research on aluminum component change and phase transformation of TiAl-based alloy in electron beam selective melting process under multiple scan[J]. Intermetallics, 2019, 113:106575. [94] SEIKH A H, MOHA MMAD A, SHERIF E S M, et al. Corrosion behavior in 3.5% NaCl solutions of γ-TiAl processed by electron beam melting process[J]. Metals, 2015, 5(4):2289-2302. [95] CORMIER D, HARRYSSON O, MAHALE T, et al. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders[J]. Research Letters in Materials Science, 2007, 10:737-741. [96] FILIPPINI M, BERETTA S, PATRIARCA L, et al. Defect tolerance of a gamma titanium aluminide alloy[J]. Procedia Engineering, 2011, 10:3677-3682. [97] SCHWERDTFEGER J, KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr:Microstructure and aluminium loss[J]. Intermetallics, 2014, 49:29-35. [98] MURR L E, GAYTAN S M, CEYLAN A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5):1887-1894. [99] WONG H, GARRARD R, BLACK K, et al. Material characterisation using electronic imaging for Electron Beam Melting process monitoring[J]. Manufacturing Letters, 2020, 23:44-48. [100] MOHA MMAD A, AL-AHMARI M A, ALFAIFY A, et al. Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy[J]. Rapid Prototyping Journal, 2017, 23(3):474-485. [101] LI W, LIU J, WEN S F, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 2016, 113:125-133. [102] YANG Y, WEN S F, WEI Q S, et al. Effect of scan line spacing on texture, phase and nanohardness of TiAl/TiB2 metal matrix composites fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2017, 728:803-814. [103] ZHANG X Y, LI C W, ZHENG M Y, et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition[J]. Additive Manufacturing, 2020, 32:101087. [104] YUE H Y, CHEN Y Y, WANG X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 750:617-625. [105] LI W, LI M, YANG Y, et al. Enhanced compressive strength and tailored microstructure of selective laser melted Ti-46.5Al-2.5Cr-2Nb-0.5Y alloy with different boron addition[J]. Materials Science and Engineering:A, 2018, 731:209-219. [106] LI W, LI M, LIU J, et al. Microstructure control and compressive properties of selective laser melted Ti-43.5Al-6.5Nb-2Cr-0.5B alloy:Influence of reduced graphene oxide (RGO) reinforcement[J]. Materials Science and Engineering:A, 2019, 743:217-222. [107] LI M, WU X, YANG Y, et al. TiAl/RGO (reduced graphene oxide) bulk composites with refined microstructure and enhanced nanohardness fabricated by selective laser melting (SLM)[J]. Materials Characterization, 2018, 143:197-205. [108] ISMAEEL A, WANG C S. Effect of Nb additions on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(5):1007-1016. [109] WANG J W, LUO Q, WANG H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique[J]. Additive Manufacturing, 2020, 32:101007. [110] NAGA SRUTHI N, BANUMATHY S, NAGESWARA RAO G V S, et al. Solidification behavior of γ-aluminide Ti-46.5Al-xNb-yCr-zMo-0.3B alloys[J]. Vacuum, 2019, 163:352-359. [111] ABDULRAHMAN K O, AKINLABI E T, MAHAMOOD R M. Characteristics of laser metal deposited titanium aluminide[J]. Materials Research Express, 2019, 6:046504. [112] WU Y, ZHANG S Q, CHENG X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process[J]. Journal of Alloys and Compounds, 2019, 799:325-333. [113] DILIP J J S, MIYANAJI H, LASSELL A, et al. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing[J]. Defence Technology, 2017, 13(2):72-76. [114] ZHANG J S, WU Y, CHENG X, et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique[J]. Materials Letters, 2019, 243:62-65. [115] RITTINGHAUS S K, MOLINA RAMIREZ V R, ZIELINSKI J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl[J]. Journal of Laser Applications, 2019, 31(4):042005. [116] RITTINGHAUS S K, HECHT U, WERNER V, et al. Heat treatment of laser metal deposited TiAl TNM alloy[J]. Intermetallics, 2018, 95:94-101. [117] SẂADZBA R, MARUGI K, PYCLIK Ł. STEM investigations of γ-TiAl produced by additive manufacturing after isothermal oxidation[J]. Corrosion Science, 2020, 169:108617. [118] KAN W, CHEN B, JIN C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting[J]. Materials & Design, 2018, 160:611-623. [119] CAPRIO L, DEMIR A G, CHIARI G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system[J]. Journal of Physics Photonics, 2020, 2:024001. [120] CHEN Y Y, YUE H Y, WANG X P, et al. Selective electron beam melting of TiAl alloy:Microstructure evolution, phase transformation and microhardness[J]. Materials Characterization, 2018, 142:584-592. [121] BASILE G, BAUDANA G, MARCHESE G, et al. Characterization of an additive manufactured TiAl alloy-steel joint produced by electron beam welding[J]. Procedia CIRP, 2018, 11:149-157. [122] GUO C, GE W J, LIN F. Dual-material electron beam selective melting:Hardware development and validation studies[J]. Engineering, 2015, 1(1):124-130. [123] WARTBICHLER R, CLEMENS H, MAYER S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy[J]. Advanced Engineer Materials, 2019, 21:1900800. [124] PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2012, 212(12):2619-2628. [125] YASA E, DECKERS J, KRUTH J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5):312-327. [126] YANG G Y, JIA W P, ZHAO P, et al. Microstructures of as-fabricated and post heat treated Ti-47Al-2Nb-2Cr alloy produced by selective electron beam melting (SEBM)[J]. Rare Metal Materials and Engineering, 2016, 45(7):1683-1686. [127] TODAI M, NAKANO T, LIU T Q, et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Additive Manufacturing, 2017, 13:61-70. [128] KAN W, CHEN B, PENG H, et al. Fabrication of nano-TiC reinforced high Nb-TiAl nanocomposites by electron beam melting[J]. Materials Letters, 2020, 259:126856. [129] KAN W B, LIANG Y F, PENG H, et al. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(12):2596-2601. [130] YOUN S J, KIM Y K, KIM S W, et al. Elevated temperature compressive deformation behaviors of γ-TiAl-based Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Intermetallics, 2020, 124:106859. [131] KIM Y K, HONG J K, LEE K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment[J]. Intermetallics, 2020, 121:106771. [132] PRADEEP G V K, DURAISELVAM M, PRASAD K S, et al. Tribological behavior of additivemanufactured γ-TiAl by electron beam melting[J]. Transactions of the Indian Institute of Metals, 2020, 73(6):1661-1667. [133] IÇÖZ C, PATRIARCA L, FILIPPINI M, et al. Strain accumulation in TiAl intermetallics via high-resolution digital image correlation (DIC)[J]. Procedia Engineering, 2014, 74:443-448. [134] CHEN Y Y, YUE H Y, WANG X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering:A, 2018, 713:195-205. [135] BIAMINO S, PENNA A, ACKELID U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy:Microstructure and mechanical properties investigation[J]. Intermetallics, 2011, 19(6):776-781. [136] LIN B C, CHEN W, YANG Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830:154684. [137] SEIFI M, SALEM A A, SATKO D P, et al. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb[J]. Journal of Alloys and Compounds, 2017, 729:1118-1135. [138] BAUDANA G, BIAMINO S, KLÖDEN B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si:Feasibility investigation[J]. Intermetallics, 2016, 73:43-49. [139] FRANZÉN S F, KARLSSON J, DEHOFF R, et al. Microstructural properties of gamma titanium aluminide manufactured by electron beam melting[M]//Supplemental Proceedings. Hoboken:John Wiley & Sons, Inc., 2011:455-462. [140] SANKAR G S, KARTHIK G M, MOHA MMAD A, et al. Friction welding of electron beam melted-TiAl alloy Ti-48Al-2Cr-2Nb[J]. Transactions of the Indian Institute of Metals, 2019, 72(1):35-46. [141] GE W J, GUO C, LIN F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting[J]. Procedia Engineering, 2014, 81:1192-1197. [142] BAUDANA G, BIAMINO S, UGUES D, et al. Titanium aluminides for aerospace and automotive applications processed by electron beam melting:Contribution of Politecnico di Torino[J]. Metal Powder Report, 2016, 71(3):193-199. [143] KIM Y K, YOUN S J, KIM S W, et al. High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting[J]. Materials Science and Engineering:A, 2019, 763:138138. [144] THOMAS M, MALOT T, AUBRY P, et al. The prospects for additive manufacturing of bulk TiAl alloy[J]. Materials at High Temperatures, 2016, 33(4-5):571-577. [145] KENEL C, DASARGYRI G, BAUER T, et al. Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures[J]. Materials & Design, 2017, 134:81-90. [146] TEBALDO V, FAGA M G. Influence of the heat treatment on the microstructure and machinability of titanium aluminides produced by electron beam melting[J]. Journal of Materials Processing Technology, 2017, 244:289-303. [147] CHO K, KOBAYASHI R, OH J Y, et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting[J]. Intermetallics, 2018, 95:1-10. [148] KONDO D, YASUDA H, NAKANO T, et al. The effect of hip treatment on the mechanical properties of titanium aluminide additive manufactured by EBM[J]. Materials Research Proceedings, 2019, 10:114-120. |
[1] | 赖佑奎, 马海腾, 刘一粟, 欧阳华. 基于磁共振测速的复合冷却涡轮叶片流动分析[J]. 航空学报, 2023, 44(14): 627920-627920. |
[2] | 范永升, 杨晓光, 石多奇, 谭龙, 黄渭清. 服役涡轮叶片筏化判废:定量表征及阈值确定[J]. 航空学报, 2022, 43(9): 625100-625100. |
[3] | 杨建凯, 顾冬冬, 葛庆, 檀晨晨, 文雨. 铝合金激光增材制造支撑布局及精确成形机制[J]. 航空学报, 2022, 43(4): 525331-525331. |
[4] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[5] | 张佩宇, 周鑫, 李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报, 2022, 43(4): 525610-525610. |
[6] | 王斌, 王海涛, 王玉峰, 张文武. 热障涂层水助激光扫描加工试验[J]. 航空学报, 2022, 43(4): 525353-525353. |
[7] | 叶林, 刘存良, 朱安冬, 周天亮. 紧凑凸肋通道对尾缘劈缝气膜冷却特性的影响[J]. 航空学报, 2022, 43(3): 125174-125174. |
[8] | 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 225064-225064. |
[9] | 顾冬冬, 张晗, 刘刚, 杨碧琦. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021, 42(10): 524868-524868. |
[10] | 胡晓安, 石多奇, 杨晓光, 于慧臣. TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3): 422494-422494. |
[11] | 陈大为, 朱惠人, 李华太, 刘海涌, 周道恩. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报, 2019, 40(3): 122651-122651. |
[12] | 冯一琦, 谢国印, 张璧, 乔国文, 高尚, 白倩. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12): 423089-423089. |
[13] | 林会杰, 沈理达, 姜金辉, 谢德巧, 梁绘昕, 范钦春. 选区激光熔化成型悬垂结构特征模拟分析[J]. 航空学报, 2018, 39(7): 421897-421897. |
[14] | 黄福享, 苗恺, 鲁中良, 徐文梁, 朱伟军, 李涤尘. 辐射涂层对空心涡轮叶片定向凝固组织的影响[J]. 航空学报, 2018, 39(3): 421462-421462. |
[15] | 崔康, 汪文虎, 蒋睿嵩, 赵德中, 靳淇超. 基于力约束的空心涡轮叶片陶芯定位方法[J]. 航空学报, 2017, 38(9): 421209-421209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学