[1] LIVNE E, WEISSHAARW T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065. [2] XIANG J, YAN Y, LI D. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1):12-22. [3] SU W, CESNIK C E S. Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft[J]. International Journal of Solids and Structures, 2011, 48(16):2349-2360. [4] LIEU T, FARHAT C. POD-based aeroelastic analysis of a complete F-16 configuration:ROM adaptation and demonstration:AIAA-2005-2295[R]. Reston, VA:AIAA, 2005. [5] AMSALLEM D, FARHAT C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7):1803-1813. [6] LYU Z, KENWAY G K, PAIGE C, et al. Automatic differentiation adjoint of the reynolds-averaged navier-stokes equations with a turbulence model:AIAA-2013-2581[R]. Reston, VA:AIAA, 2013. [7] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886. [8] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2):412-423. [9] TIMME S. Transonic aeroelastic instability searches using a hierarchy of aerodynamic models[D]. Liverpool:University of Liverpool, 2010. [10] PERERA M, GUO S. Structural and dynamic analysis of a seamless aeroelastic wing:AIAA-2010-2878[R]. Reston, VA:AIAA, 2010. [11] HESSE H, PALACIOS R. Reduced-order aeroelastic models for dynamics of maneuvering flexible aircraft[J]. AIAA Journal, 2014, 52(8):1717-1732. [12] HAGHIGHAT S, RA MATRINS J R, LIU H H. Aeroservoelastic design optimization of a flexible wing[J]. Journal of Aircraft, 2012, 49(2):432-443. [13] STANFORD B, BERAN P. Direct flutter and limit cycle computations of highly flexible wings for efficient analysis and optimization[J]. Journal of Fluids and Structures, 2013, 36:111-123. [14] MALLIK W, KAPANIA R K, SCHETZ J A. Effect of flutter on the multidisciplinary design optimization of truss-braced-wing aircraft[J]. Journal of Aircraft, 2015, 52(6):1858-1872. [15] ZHANG Z, CHEN P C, WANG Q, et al. Adjoint based structure and shape optimization with flutter constraints:AIAA-2016-1176[R]. Reston, VA:AIAA, 2016. [16] IM D K, CHOI S, MCCLURE J E, et al. Mapped Chebyshev pseudospectral method for unsteady flow analysis[J]. AIAA Journal, 2015, 53(12):3805-3820. [17] CHOI J Y, CHOI S, PARK J, et al. Prediction of dynamic Stability using mapped Chebyshev pseudospectral method:AIAA-2016-1347[R]. Reston, VA:AIAA, 2016. [18] MOIN P. Fundamentals of engineering numerical analysis[M]. Cambridge:Cambridge University Press, 2010. [19] BAYLISS A, TURKEL E. Mappings and accuracy for Chebyshev pseudo-spectral approximations[J]. Journal of Computational Physics, 1992, 101(2):349-359. [20] KOSLOFF D, TAL-EZER H. A modified Chebyshev pseudospectral method with an O (N-1) time step restriction[J]. Journal of Computational Physics, 1993, 104(2):457-469. [21] KATZ J, PLOTKINP A. Low-speed aerodynamics[M]. Cambridge:Cambridge University Press, 2001. [22] MURUA J. Flexible aircraft dynamics with a geometrically-nonlinear description of the unsteady aerodynamics[D]. London:Imperial College London, 2012. [23] GERADIN M, CARDONA A. Flexible multibody dynamics:A finite element approach[M]. 2001. [24] GOLAND M. The flutter of a uniform cantilever wing[J]. Journal of Applied Mechanics, 1945, 12(4):197-208. [25] PATIL M J, HODEGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 37(5):753-760. |