[1] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese).[2] PARK M A, AFTOSMIS M J, CAMPBELL R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop[J]. Journal of Aircraft,2014, 51(3):987-1001.[3] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[C]//32nd AIAA Aplied Aerodynamics Conference.Reston, VA:AIAA, 2014.[4] PARK M A, MARIAN N. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R].Reston,VA:AIAA, 2017.[5] RALLABHANDIS K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston,VA:AIAA, 2017.[6] CHEUNG S, EDWARDS T, LAWRENCE S. Application of CFD to sonic boom near and midfield prediction:NASA TM-102867[R].Washington,D.C.:NASA,1990.[7] SICLARI M J, DARDEN C M. An euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft,1990, 30(6):911-917.[8] WHITHAM G B. The flow pattern of asupersonic projectile[J]. Communications on Pure and Applied Mathematics,1952, 5(3):301-348.[9] PAGE J A, PLOTKIN K J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction:AIAA-1991-3275[R]. Reston,VA:AIAA, 1991.[10] CLIFF S E, THOMAS S D. Euler/Experiment correlations of sonic boom pressure signatures[J]. Journal of Aircraft,1993, 30(5):669-675.[11] SICLARI M J, DARDEN C M. Euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft, 1993, 30(6):911-917.[12] ALONSO J, JAMESON A, KROO I. Advanced algorithms for design and optimization of quiet supersonic platforms:AIAA-2002-0144[R]. Reston,VA:AIAA, 2002.[13] MEREDITH K, DAHLIN J, GRAHAM D, et al. Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures:AIAA-2005-0006[R]. Reston,VA:AIAA, 2005.[14] LAFLIN K R, KLAUSMEYER S M, CHAFFIN M A. Hybrid computational fluid dynamics procedure for sonic boom prediction:AIAA-2006-3168[R]. Reston,VA:AIAA, 2006.[15] JONES W, NIELSEN E, PARM M. Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom prediction:AIAA-2006-1150[R]. Reston,VA:AIAA, 2006.[16] OZCER I, KANDIL O. Fun3D/OptiGRID coupling for unstructured grid adaptation for sonic boom problems:AIAA-2008-0061[R]. Reston,VA:AIAA, 2008.[17] AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D:AIAA-2011-3500[R]. Reston,VA:AIAA, 2011.[18] NEMEC M, AFTOSMIS M, WINTZER M. Adjoint-based adaptive mesh refinement for complex geometries:AIAA-2008-0075[R]. Reston,VA:AIAA, 2008.[19] WINTZER M, NEMEC M, AFTOSMIS M. Adjoint-based adaptive mesh refinement for sonic boom prediction:AIAA-2008-6593[R]. Reston,VA:AIAA, 2008.[20] GAN J Y, ZHA G C. Near field sonic boom calculation of benchmark cases:AIAA-2015-1252[R]. Reston,VA:AIAA, 2015.[21] ALAUZET F, LOSEILLE A. High-order sonic boom modeling based on adaptive methods[J]. Journal of Computational Physics, 2010, 229(3):561-593.[22] KANDIL O, YANG Z, BOBBITT P. Prediction of sonic boom signature using euler-full potential CFD with grid adaptation and shock fitting:AIAA-2002-2542[R]. Reston,VA:AIAA, 2002.[23] RALLABHANDI S K. Advanced sonic boom prediction using the augmented burgers equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253.[24] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015,36(8):2507-2528. ZHU Z Q, LAN S L. Study ofsupersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).[25] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power,2010, 25(2):359-365(in Chinese).[26] 但聃, 杨伟. 超音速公务机声爆计算与布局讨论[J]. 航空工程进展, 2012, 3(1):7-15. DAN D, YANG W. Supersonic business jet sonic boom computation and layout discussion[J]. Aeronautical Science & Technology, 2012, 3(1):7-15(in Chinese).[27] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学,2010, 28(6):21-23. FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6):21-23(in Chinese).[28] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11):1980-1986. FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011:32(11):1980-1986(in Chinese).[29] 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1):30-37. FENG X Q, LI Z K,SONG B F, et al. Optimization of sonic boom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1):30-37(in Chinese).[30] FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics,2014, 27(3):531-541.[31] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configuration[J]. Aeronautical Science & Technology,2016, 27(7):12-16(in Chinese).[32] MA B P, WANG G, REN J,et al. Near field sonic boom analysis with HUNS3D solver:AIAA-2017-0038[R]. Reston,VA:AIAA, 2017.[33] WANG G, YE Z Y. Mixed element type unstructured grid generation and its application to viscous flow simulation[C]//24th International Congress of the Aeronautical Sciences. ICAS, 2004.[34] LI C N, YE Z Y, WANG G. Simulation of flow separation at the wing-body junction with different fairings[J]. Journal of Aircraft,2008, 45(1):258-266.[35] MIAN H H, WANG G, RAZA M A. Application and validation of HUNS3D flow solver for aerodynamic drag prediction cases[J].International Bhurban Conference on Applied Sciences and Technology, 2013,20(3):209-218.[36] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.[37] LIOU M S. Ten years in the making-AUSM-family[C]//15th AIAA Computational Fluid Dynamics Conference.Reston,VA:AIAA,2013.[38] lSMAIL, FARZAD, PHILIP L. Affordable, entropy-consistent euler flux functions Ⅱ:Entropy production at shocks[J]. Journal of Computational Physics,2009, 228(15):5410-5436.[39] ZHA G C, SHEN Y, WANG B. An improved low diffusion E-CUSP upwind scheme[J]. Computers & Fluids,2011, 48(1):214-220.[40] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes:AIAA-1981-1259[R]. Reston,VA:AIAA, 1981.[41] SPALART P, ALLMARAS S A. One-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston,VA:AIAA, 1992.[42] MENTER F R. Zonal two equation k-w turbulence models for aerodynamic flows[J]. AIAA Journal, 1993, 36(11):1975-1982.[43] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R].Washongton,D.C.:NASA, 1972.[44] PLOTKIN K J. Review of sonic boom theory:AIAA-1989-1105[R]. Reston,VA:AIAA, 1989.[45] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995.[46] LEATHERWOOD J D, SULLIVAN B M. Effect of sonic boom asymmetry on subjective loudness:NASA TM-107708[R].Wasington,D.C.:NASA, 1992.[47] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. A summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598.[48] CARLSON H W, MACK R J, MORRIS O A. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions:NASA TN-D-3106[R].Washington,D.C.:NASA,1965.[49] HUNTON L W, HICKS R M, MENDOZA J P. Some effects of wing planform on sonic boom:NASA TN-D-7160[R].Washington,D.C.:NASA,1973. |