[1] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Science and Engineering, 2004.[2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.[3] GREEN J E. Laminar flow control-Back to the future?:AIAA-2008-3738[R]. Reston, VA:AIAA, 2008.[4] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.[5] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).[6] WAGNER R D, MADDALON D V, FISHER D F. Laminar flow control leading-edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244.[7] COLLIER F S. An overview of recent subsonic laminar flow control flight experiments:AIAA-1993-2987[R]. Reston, VA:AIAA, 1993.[8] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//AIAA 52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014.[9] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).[10] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese).[11] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010,25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010,25(4):918-924(in Chinese).[12] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010,24(3):54-58. WANG F, ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).[13] SHI Y, BAI J, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367.[14] MACK L M. Boundary-layer linear stability theory:AGARD Rep. 709[R]. Paris:AGARD, 1984.[15] DAGENHART J, SARIC W S. Crossflow stability and transition experiments in swept-wing flow[R]. Washington, D.C.:NASA Langley Technical Report Server, 1999.[16] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Stuttgart University, 2006.[17] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).[18] COQUILLART S. Extended free-form deformation:A sculpturing tool for 3D geometric modeling[J]. Computer Graphics, 1990, 24(4):187-196.[19] BOER A D, SCHOOT V D, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11-14):784-795.[20] 白俊强, 刘南, 邱亚松, 等. 基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12):2701-2715. BAI J Q, LIU N, QIU Y S, et al. Optimization of multi-foil based on RBF mesh deformation method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2710-2715(in Chinese).[21] 白俊强, 尹戈玲, 孙智伟. 基于二阶振荡及自然选择的随机权重混合粒子群算法[J]. 控制与决策, 2012(10):1459-1464. BAI J Q, YIN G L, SUN Z W. Random weighted hybrid particle swarm optimization algorithm based on second order oscillation and natural selection[J]. Control and Decision, 2012(10):1459-1464(in Chinese). |