航空学报 > 2017, Vol. 38 Issue (11): 121363-121363   doi: 10.7527/S1000-6893.2017.121363

可压缩流动激波装配在格心型有限体积法中的应用

邹东阳1, 刘君1, 邹丽2   

  1. 1. 大连理工大学 航空航天学院, 大连 116024;
    2. 大连理工大学 船舶工程学院, 大连 116024
  • 收稿日期:2017-04-27 修回日期:2017-06-26 出版日期:2017-11-15 发布日期:2017-06-26
  • 通讯作者: 刘君 E-mail:liujun65@dlut.edu.cn
  • 基金资助:

    国家自然科学基金(91541117)

Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods

ZOU Dongyang1, LIU Jun1, ZOU Li2   

  1. 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
    2. School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2017-04-27 Revised:2017-06-26 Online:2017-11-15 Published:2017-06-26
  • Supported by:

    National Natural Science Foundation of China (91541117)

摘要:

发展了一种基于格心型有限体积方法(FVM)的激波装配算法。通过定义网格节点属性可以灵活调用激波装配和激波捕捉计算方法。在使用激波装配方法时,激波节点运动速度和下游运动速度通过Rankine-Hugoniot (R-H)关系式获得,同时采用非结构动网格技术描述激波的运动以及调整其他网格节点的位置。流过激波面元的通量为上游单元的基本通量,物理概念更加清晰,通量计算也更为准确。在计算过程中,网格节点属性可以发生变化,以此实现对带有拓扑变化流场的描述。数值试验表明:本文提出的计算方法不但具有较高的计算精度,同时能有效地避免由于捕捉激波而出现的数值问题。

关键词: 激波装配, 非结构动网格, 有限体积法(FVM), 计算流体力学, 可压缩流动

Abstract:

A shock-fitting technique for cell-centered Finite Volume Method (FVM) is developed in this work. It is flexible to switch among shock-fitting and shock-capturing methods by changing the nature of grid nodes, which are defined as shock nature and common nature. In the shock-fitting method, velocities of shock nodes and downstream states are obtained by solving Rankine-Hugoniot (R-H) relations. The unstructured dynamic grid technique is used for shock tracking and updating the positions of other common nodes. The flux across a shock face equals the basic flux of its upstream cell. During the computational process, the nature of the nodes is allowed to change. Thus, it is easier to apply this method in complex problems, even with topological change. The numerical results show the proposed method is not only of high accuracy, but also able to avoid the troubles in shock-capturing.

Key words: shock-fitting, unstructured dynamic grid, Finite Volume Method (FVM), computational fluid dynamics, compressible flow

中图分类号: