[1] CONLISK A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Sciences, 2002, 37(5):417-476.
[2] VIEIRA B A O, MAUGHMER M D. An evaluation of dynamic stall onset prediction methods for rotorcraft airfoil design:AIAA-2013-1093[R]. Reston:AIAA, 2013.
[3] GEISSLER W, RAFFEL M, DIETZ G, et al. Helicopter aerodynamics with emphasis placed on dynamic stall[M]. Heidelberg:Springer, 2007:199-204.
[4] CHOPRA I. Review of state of art of smart structures and integrated systems[J]. AIAA Journal, 2002, 40(11):2145-2187.
[5] CARR L. The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil:AIAA-1983-2533[R]. Reston:AIAA, 1983.
[6] POST M L, CORKE T C. Separation control using plasma actuators:Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12):3125-3135.
[7] ZHAO G Q, ZHAO Q J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science & Technology, 2015, 43(6):406-414.
[8] JAWORSKI J W. Thrust and aerodynamic forces from an oscillating leading-edge flap[J]. AIAA Journal, 2012, 50(12):2928-2931.
[9] PECHAN T. Design and analysis of an active leading edge wing:AIAA-2013-01222[R]. Reston:AIAA, 2013.
[10] CHANDRASEKHARA M S. A review of compressible dynamic stall control principles and methods[C]//Proceedings of the Tenth Asian Congress of Fluid Mechanics. ACFM, 2004:1-6.
[11] FESZTY D, GILLIES E A, VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge flap flow control[J]. AIAA Journal, 2004, 42(1):17-25.
[12] KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2):407-418.
[13] GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2012, 45(7):1688-1694.
[14] LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids & Structures, 2011, 27(8):1411-1424.
[15] 王进, 杨茂, 陈凤明. 带后缘襟翼翼型的非定常气动特性数值仿真[J]. 计算机仿真, 2011, 28(2):88-92. WANG J, YANG M, CHEN F M. CFD simulation of unsteady aerodynamic of airfoil with trailing-edge flap[J]. Computer Simulation, 2011, 28(2):88-92(in Chinese).
[16] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5):1028-1035. LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1028-1035(in Chinese).
[17] 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5):1083-1091. WANG R, XIA P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by using multiple trailing edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(5):1083-1091(in Chinese).
[18] 王博, 招启军, 徐广, 等. 一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1):14-21. WANG B, ZHAO Q J, XU G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1):14-21(in Chinese).
[19] 赵国庆, 招启军, 王清. 旋翼翼型非定常动态失速特性的CFD模拟及参数分析[J]. 空气动力学学报, 2015, 33(1):72-81. ZHAO G Q, ZHAO Q J, WANG Q. Simulations and parametric analyses on unsteady dynamic stall characteristics of rotor airfoil based on CFD method[J]. Acta Aerodynamica Sinica, 2015, 33(1):72-81(in Chinese).
[20] MCALISTER K W, PUCCI S L, MCCROSKEY W J, et al. An experimental study of dynamic stall on advanced airfoil section. Volume 2:Pressure and force data:NASA TM-84245[R]. Washington, D.C.:NASA, 1982. |