[1] 胡壮麒, 刘丽荣, 金涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3): 1-7. HU Z Q, LIU L R, JIN T, et al. Development of the Ni-based single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1-7 (in Chinese).
[2] 陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2008: 46-83. TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2008: 46-83 (in Chinese).
[3] 丁智平, 刘义伦, 尹泽勇. 镍基单晶高温合金蠕变-疲劳寿命评估方法进展[J]. 机械强度, 2003, 25(3): 254-259. DING Z P, LIU Y L, YIN Z Y. Development on evaluating method of creep-fatigue life of single crystal nickel-based superalloys[J]. Journal of Mechanical Strength, 2003, 25(3): 254-259 (in Chinese).
[4] 李影, 苏彬, 吴学仁. 高温下取向对DD6单晶高温合金低周疲劳寿命的影响[J]. 航空材料学报, 2001, 21(2): 22-25. LI Y, SU B, WU X R. Orientation dependence of low cycle fatigue life of single-crystal nickel-base superalloy DD6 under high temperature[J]. Journal of Aeronautical Materials, 2001, 21(2): 22-25 (in Chinese).
[5] 李影, 苏彬. DD6单晶合金高温低周疲劳机制[J]. 航空动力学报, 2003, 18(6): 732-736. LI Y, SU B. Mechanisms of low cyclic fatigue of DD6 alloy at elevated temperature[J]. Journal of Aerospace Power, 2003, 18(6): 732-736 (in Chinese).
[6] LI S X, ELLISON E G, SMITH D J. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys[J]. Journal of Strain Analysis for Engineering Design, 1994, 29(2): 147-153.
[7] 岳珠峰, 陶仙德, 尹泽勇, 等. 一种镍基单晶超合金高温低周疲劳的晶体取向相关性模型[J]. 应用数学和力学, 2000, 21(4): 373-381. YUE Z F, TAO X D, YIN Z Y, et al. A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel-base single crystal superalloy[J]. Applied Mathematics and Mechanics, 2000, 21(4): 373-381 (in Chinese).
[8] 石多奇, 杨晓光, 于慧臣. 一种镍基单晶和定向结晶的疲劳寿命模型[J]. 航空动力学报, 2010, 25(8): 1871-1875. SHI D Q, YANG X G, YU H C. Fatigue life prediction model for nickel-based single crystal and directionally solidified superalloy[J]. Journal of Aerospace Power, 2010, 25(8): 1871-1875 (in Chinese).
[9] KAROLCZUK A, MACHA E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J]. International Journal of Fracture, 2005, 134(1): 267-304.
[10] ARAKERE N K, SWANSON G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J]. Journal Engineering for Gas Turbines and Power, 2002, 124(1): 161-175.
[11] SWANSON G, ARAKERE N K. Effect of crystal orientation on analysis of single-crystal nickel-based turbine blade superalloys: NASA TP-2000-210074[R]. Washington, D.C.: NASA, 2000: 11-54.
[12] NAIK R A, DELUCA D P, SHAH D M. Critical plane fatigue modeling and characterization of single crystal nickel superalloys[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 391-400.
[13] SHI D Q, HUANG J, YANG X G, et al. Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy[J]. International Journal of Fatigue, 2013, 49(1): 31-39.
[14] 刘金龙. 镍基单晶/定向凝固涡轮叶片铸造模拟及其合金低循环疲劳行为研究[D]. 北京: 北京航空航天大学, 2011: 101-130. LIU J L. Investigation on cast simulation and low cycle fatigue behavior of Ni-based single crystal and directionally solidified turbine blade[D]. Beijing: Beihang University, 2011: 101-130 (in Chinese).
[15] LEVKOVITCH V, SIEVERT R, SVEBDSEN B. Simulation of deformation and lifetime behavior of a FCC single crystal superalloy at high temperature under low-cycle fatigue loading[J]. International Journal of Fatigue, 2006, 28(12): 1791-1802.
[16] TINGA T, BREKELMANS W A M, GEERS M G D. Time-incremental creep-fatigue damage rule for single crystal Ni-base superalloys[J]. Materials Science and Engineering A, 2009, 508(1-2): 200-208.
[17] 荆甫雷. 单晶涡轮叶片热机械疲劳寿命评估方法研究[D]. 北京: 北京航空航天大学, 2013: 59-75. JING F L. Research on thermo-mechanical fatigue life assessment of single crystal turbine blades[D]. Beijing: Beihang University, 2013: 59-75 (in Chinese).
[18] 王荣桥, 荆甫雷, 胡殿印. 基于临界平面的镍基单晶高温合金疲劳寿命预测模型[J]. 航空动力学报, 2013, 28(11): 2587-2592. WANG R Q, JING F L, HU D Y. Fatigue life prediction method based on critical plane for nickel-based single crystal superalloys[J]. Journal of Aerospace Power, 2013, 28(11): 2587-2592 (in Chinese).
[19] JORDAN E H, WALKER K P. A viscoplastic model for single crystals[J]. Journal of Engineering Materials and Technology, 1992, 114(1): 19-26.
[20] JORDAN E H, SHI S X, WALKER K P. The viscoplastic behavior of Hastelloy-X single crystal[J]. International Journal of Plasticity, 1993, 9(1): 119-139. |