航空学报 > 2015, Vol. 36 Issue (12): 3785-3797   doi: 10.7527/S1000-6893.2015.0088

基于分层思路的动态非线性气动力建模方法

寇家庆, 张伟伟, 叶正寅   

  1. 西北工业大学航空学院, 西安 710072
  • 收稿日期:2015-01-07 修回日期:2015-03-25 出版日期:2015-12-15 发布日期:2015-04-24
  • 通讯作者: 张伟伟,Tel.:029-88491342,E-mail:aeroelastic@nwpu.edu.cn E-mail:aeroelastic@nwpu.edu.cn
  • 作者简介:寇家庆,男,硕士研究生。主要研究方向:飞行器系统辨识,非定常空气动力学。Tel:029-88491342,E-mail:koujiaqing93@163.com;张伟伟,男,博士,教授,博士生导师。主要研究方向:气动弹性力学,非定常空气动力学。Tel:029-88491342,E-mail:aeroelastic@nwpu.edu.cn;叶正寅,男,博士,教授,博士生导师。主要研究方向:空气动力学,气动弹性力学。Tel:029-88491374,E-mail:yezy@nwpu.edu.cn
  • 基金资助:

    国家自然科学基金(11172237, 11572252);新世纪优秀人才支持计划(NCET-13-0478)

Dynamic nonlinear aerodynamics modeling method based on layered model

KOU Jiaqing, ZHANG Weiwei, YE Zhengyin   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2015-01-07 Revised:2015-03-25 Online:2015-12-15 Published:2015-04-24
  • Supported by:

    National Natural Science Foundation of China (11172237, 11572252); Program for New Century Excellent Talents in University (NCET-13-0478)

摘要:

很多非线性气动力模型难以精确预测系统的小扰动线性特征。针对这一局限,提出了一种非线性分层模型,用于辨识跨声速非线性非定常气动力。分层建模需要同时提供微幅振荡和大幅振荡两套训练样本,首先通过线性模型(如带外输入的自回归(ARX)模型)对微幅振荡样本进行建模,而后采用非线性模型(如径向基函数神经网络(RBFNN))对大幅振荡的样本与线性模型的差量进行建模,进而把线性模型和非线性模型的输出相叠加,得到分层非线性动力学模型。算例表明建立的分层气动力模型与单一自回归径向基函数(AR-RBF)神经网络模型相比不仅具有更高的数值精度,可以精确预测大幅运动中的非线性特征,而且在小扰动状态下自动退化为线性模型,能够精确刻画结构微幅振荡下的线性动力学特性。

关键词: 分层建模, 带外输入的自回归, 径向基函数神经网络, 非定常气动力, 跨声速流

Abstract:

It is found that many nonlinear aerodynamic models cannot accurately predict linear characteristics under small disturbances. Based on the above limitation, a nonlinear layered model for identifying transonic nonlinear unsteady aerodynamic forces is presented. Layered modeling process needs training samples of both small and large amplitude oscillations. Firstly, the linear model (autoregressive with exogenous input, ARX) is constructed with small amplitude maneuver and the nonlinear model (radial basis function neural network, RBFNN) is constructed with a deviation of a large amplitude maneuver and linear model samples. Then the superposition is done with the outputs of both linear and nonlinear model. Finally the layered, nonlinear dynamic model is obtained. Results show that the layered aerodynamic model has higher numerical accuracy than the autoregressive RBF (AR-RBF) neural network model. The layered model has the ability of predicting large amplitude maneuvers. For small disturbance, layered model is transformed into linear model automatically and can precisely describe the linear dynamic characteristics of small amplitude oscillation.

Key words: layered model, autoregressive with exogenous input, radial basis function networks, unsteady aerodynamic, transonic flow

中图分类号: