Please wait a minute...
航空学报 > 1992, Vol. 13 Issue (8): 357-361   doi:
多段翼型优化设计计算
陆志良1, 任继业2, 陶棣2
1. 南京航空学院6系, 南京 210016;2. 上海飞机研究所,上海 200232
OPTIMUM DESIGN CALCULATION OF MULTIELEMENT AIRFOILS
Lu Zhi-liang1, Ren Ji-ye2, Tao Di2
1. Department 6, Nanjing Aeronautical Institute, Nanjing, 210016;2. Shanghai Aircraft Research Institute, Shanghai, 200232
下载:  PDF (334KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 目标函数计算失真和选择合适的间接目标函数以减少机时是多段翼型优化计算要解决的关键问题。通过大量分析计算,对上述问题提出了下述解决办法:限制汇流强度使翼段间缝隙不过分狭窄,以解决目标函数计算失真问题。前缘缝翼优化时,用主翼面上的分离点位置作为间接目标函数;对后缘襟翼则分别以翼型升力值和分离点位置作为间接目标函数,进行优化计算。在间接目标函数优化的基础上再用最大升力系数为目标函数作少量验算即可获得可信的优化结果。实践证明这样可节省大量机时。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆志良
任继业
陶棣
关键词:  翼型  失速  气动力计算  最优化    
Abstract: The key problems on multi-element airfoils optimized for maximum lift arethe false calculation of the target function and how to select the suitable indirect target function to greatly decrease the CPU time. Based on a great deal of calculation, the valid method is obtained as follows. The condition that the confluent boundary layer can not form too early is used to restrict the gap between airfoil elements not too small, thus solving the problem of false caculation. For the optimization of a leading-edge slot, the separating position of the main element is used as indirect target function for optimizing caculation; and for that of a trailing-edge flap, the lift of the airfoil or separating position at the key airfoil element is used. Then a few further caculation with a target of maximum lift coefficient are carried out. The reliable results can be obtained repidly.
Key words:  airfiol    stall    aerodynamic calculation    optimization
收稿日期:  1991-07-23      修回日期:  1991-12-11           出版日期:  1992-08-25      发布日期:  1992-08-25      期的出版日期:  1992-08-25
引用本文:    
陆志良;任继业;陶棣. 多段翼型优化设计计算[J]. 航空学报, 1992, 13(8): 357-361.
Lu Zhi-liang;Ren Ji-ye;Tao Di. OPTIMUM DESIGN CALCULATION OF MULTIELEMENT AIRFOILS. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1992, 13(8): 357-361.
链接本文:  
http://hkxb.buaa.edu.cn/CN/  或          http://hkxb.buaa.edu.cn/CN/Y1992/V13/I8/357
[1] 贾韫泽, 桑为民, 蔡旸. 基于数值模拟的NSDBD等离子体激励器防冰特性[J]. 航空学报, 2018, 39(4): 121652-121652.
[2] 闫文辉, 薛然然. NACA4412翼型低速绕流数值计算中湍流模型对比[J]. 航空学报, 2017, 38(S1): 721515-721515.
[3] 付磊. 跨声速压气机转子旋转失速现象的非定常模拟[J]. 航空学报, 2017, 38(S1): 721524-721524.
[4] 吴艳辉, 王博, 付裕, 刘军. 轴流压气机角区分离的研究进展[J]. 航空学报, 2017, 38(9): 520974-520974.
[5] 韩少强, 宋文萍, 韩忠华, 王乐. 基于梯度增强型Kriging模型的气动反设计方法[J]. 航空学报, 2017, 38(7): 120817-120817.
[6] 刘汉儒, 陈南树. 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017, 38(6): 120746-120746.
[7] 许和勇, 邢世龙, 叶正寅, 马明生. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6): 120799-120799.
[8] 张声伟, 王伟. 外吹式襟翼动力增升效果评估方法[J]. 航空学报, 2017, 38(6): 220689-220689.
[9] 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650-120650.
[10] 田旭, 李杰. 一种改进的果蝇优化算法及其在气动优化设计中的应用[J]. 航空学报, 2017, 38(4): 120370-120370.
[11] 刘晓春, 祝小平, 周洲, 王科雷. 基于太阳能飞机应用的低雷诺数翼型研究[J]. 航空学报, 2017, 38(4): 120459-120459.
[12] 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 120312-120312.
[13] 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520733-520746.
[14] 韩忠华, 王绍楠, 韩莉, 刘方良, 许建华, 宋文萍. 一种基于动模态分解的翼型流动转捩预测新方法[J]. 航空学报, 2017, 38(1): 120034-120034.
[15] 高丽敏, 李永增, 刘晓东, 张帅. 低速轴流压气机叶尖非定常流动试验[J]. 航空学报, 2016, 37(8): 2614-2622.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Qiao Lihong;Chen Shuai. A Manufacturing Information Mapping and Integration Method Supporting Information Sharing Between Application Systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(7): 1494 -1500 .
[3] CHEN Ke;CAO Yi-hua;AUNG Ko-wynn;LI Dong. Application of Hybrid Grid to Analyzing Complex Iced Airfoil Aerodynamic Performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(增): 87 -91 .
[4] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[5] Zhu Xue-ou. SIMULATED METHOD OF FLOW RATE AT COOLING SIDE OF RADIATOR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(6): 333 -334 .
[6] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[7] DAI Xin-jin;LIN Jia-hao;CHEN Hao-ran. Non-stationary Random Vibration Analysis of Composite Laminated Structures Attached with Frequencydependant Damping Layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(增): 109 -115 .
[8] Xia Yun-cheng. COMPACT ELECTROMECHANICAL ACTUATION SYSTEM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(6): 334 -335 .
[9] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[10] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed