Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 531923.doi: 10.7527/S1000-6893.2025.31923
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Yayun SHI1,2(
), Xinze JI3,4, Tihao YANG3,4, Pengfei WU3,4, Lu XIE5, Junqiang BAI6,7, Kaixuan FENG1,2
Received:2025-03-03
Revised:2025-03-24
Accepted:2025-04-07
Online:2025-05-20
Published:2025-05-19
Contact:
Yayun SHI
E-mail:yayunshi@xjtu.edu.cn
CLC Number:
Yayun SHI, Xinze JI, Tihao YANG, Pengfei WU, Lu XIE, Junqiang BAI, Kaixuan FENG. Transition prediction and uncertainty analysis of self-developed benchmark models for supersonic laminar wings[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531923.
| [1] | LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports[C]∥34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. |
| [2] | 徐悦, 韩忠华, 尤延铖, 等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报, 2020, 65(2):127-133. |
| XU Y, HAN Z H, YOU Y C, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(2):127-133 (in Chinese). | |
| [3] | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
| DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica sinica, 2023, 44(2): 626310 (in Chinese). | |
| [4] | DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal, 2023, 61(7): 2840-2853. |
| [5] | MUNGUÍA B C, ECONOMON T D, ALONSO J J. A Discrete adjoint framework for low-boom supersonic aircraft shape optimization[C]∥18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. |
| [6] | ISHIKAWA H, UEDA Y, TOKUGAWA N. Natural laminar flow Wing design for a low-boom supersonic aircraft[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
| [7] | 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613. |
| LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613 (in Chinese). | |
| [8] | 单程军, 贡天宇, 易理哲, 等. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 2024, 45(24): 630573. |
| SHAN C J, GONG T Y, YI L Z, et al. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573 (in Chinese). | |
| [9] | 袁吉森, 孙爵, 李玲玉, 等. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316. |
| YUAN J S, SUN J, LI L Y, et al. Progress of supersonic aircraft laminar flow layout design and evaluation technologies[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316 (in Chinese). | |
| [10] | VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79: 64-91. |
| [11] | UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6): 1294-1306. |
| [12] | NORRIS G. Picture: Boeing plans plain grey natural laminar flow nacelles for 787s in bid to reduce fuel burn[EB/OL]. (2006-6-12)[2025-1-13]. . |
| [13] | Union European. Hybrid laminar flow control on tails & sing[EB/OL].(2025-1-13)[2025-03-01]. . |
| [14] | SCHRAUF G, VON GEYR H. Hybrid laminar flow control on A320 fin: Retrofit design and sample results[J]. Journal of Aircraft, 2021, 58(6): 1272-1280. |
| [15] | KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93: 24-52. |
| [16] | SCHRAUF G. Large-scale laminar flow tests evaluated with linear stability theory[J]. Journal of Aircraft, 2004, 41(2): 224-230. |
| [17] | SHI Y Y, CAO T S, YANG T H, et al. Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2020, 58(1): 118-132. |
| [18] | SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88: 95-109. |
| [19] | YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4): 2266-2286. |
| [20] | YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8): 34-47. |
| [21] | STREIT T, WEDLER S, KRUSE M. DLR natural and hybrid transonic laminar wing design incorporating new methodologies[J]. The Aeronautical Journal, 2015, 119(1221): 1303-1326. |
| [22] | SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11): 4702-4722. |
| [23] | 杨体浩, 王一雯, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法[J]. 航空学报, 2022, 43(12): 126132. |
| YANG T H, WANG Y W, WANG Y T, et al. Discrete adjoint-based optimization approach for laminar flow wings[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126132 (in Chinese). | |
| [24] | CHEN Y F, RAO H Y, XIONG N, et al. Adjoint-based robust optimization design of laminar flow airfoil under flight condition uncertainties[J]. Aerospace Science and Technology, 2023, 140: 108465. |
| [25] | CHEN Y F, RAO H Y, DENG Y J, et al. Adjoint-based robust optimization design of laminar flow wing under flight condition uncertainties[J]. Chinese Journal of Aeronautics, 2023, 36(6): 19-34. |
| [26] | BARKLAGE A, RÖMER U, BERTRAM A, et al. Analysis and uncertainty quantification of a hybrid laminar flow control system[J]. AIAA Journal, 2022, 60(10): 5735-5749. |
| [27] | SABATER C, BEKEMEYER P, GÖRTZ S. Robust design of transonic natural laminar flow wings under environmental and operational uncertainties[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
| [28] | OWENS L R, BEELER G, KING R, et al. Supersonic traveling crossflow wave characteristics in ground and flight tests[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| [29] | BARKLAGE A, RÖMER U, SEITZ A, et al. Validation of suction velocity analysis for active laminar flow control with uncertainties[J]. AIAA Journal, 2023, 61(9): 3910-3922. |
| [30] | YANG T H, WANG Y W, SHI Y Y, et al. Transition prediction for hybrid laminar flow control flight test considering geometric uncertainties[J]. Journal of Aerospace Engineering, 2022, 35(6): 04022100. |
| [31] | ZHENG X H, YAO W, GONG Z Q, et al. Learnable quantile polynomial chaos expansion: An uncertainty quantification method for interval reliability analysis[J]. Reliability Engineering & System Safety, 2024, 245: 110036. |
| [32] | 赵超帆, 袁修开, 陈敬强. 结构全局失效概率函数估计的自适应增强线抽样方法[J]. 西北工业大学学报, 2023, 41(1): 105-114. |
| ZHAO C F, YUAN X K, CHEN J Q. Structural global failure probability function estimation based on adaptive augmented line sampling method[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 105-114 (in Chinese). | |
| [33] | CHEN Y G, ZHONG R, WANG Q S, et al. Uncertain stochastic vibration characteristic analysis of composite laminated rectangular plate based on improved Kriging model[J]. Composite Structures, 2024, 340: 118180. |
| [34] | ZHANG W, ZHAO Z Y, XU H W, et al. AK-Gibbs: An active learning Kriging model based on Gibbs importance sampling algorithm for small failure probabilities[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 426: 116992. |
| [35] | 韦新鹏, 姚中洋, 宝文礼, 等. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报, 2024, 60(2): 356-368. |
| WEI X P, YAO Z Y, BAO W L, et al. Evidence-theory-based reliability analysis method using active-learning Kriging model[J]. Journal of Mechanical Engineering, 2024, 60(2): 356-368 (in Chinese). | |
| [36] | CEBECI T. Stability and transition: Theory and application: Efficient numerical methods with computer programs[M]. Cham:Springer, 2004. |
| [37] | ARNAL D. Boundary layer transition: Predictions based on linear theory[J]. AGARD, 1994. |
| [38] | UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6): 1294-1306. |
| [39] | OWENS L R, BEELER G, KING R, et al. Supersonic crossflow transition control in ground and flight tests[C]∥2019 AIAA SciTech Forum and Exposition. Reston: AIAA, 2019. |
| [40] | ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154. |
| [41] | FENG K X, LU Z Z, WANG L. A novel dual-stage adaptive Kriging method for profust reliability analysis[J]. Journal of Computational Physics, 2020, 419: 109701. |
| [42] | GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703. |
| [43] | KENWAY G, KENNEDY G, MARTINS J R R A. A CAD-free approach to high-fidelity aerostructural optimization[C]∥13th AIAA/ISSMO Multidisciplinary Analysis Optimization conference. Reston: AIAA, 2010. |
| [44] | LIU D S, LITVINENKO A, SCHILLINGS C, et al. Quantification of airfoil geometry-induced aerodynamic uncertainties: Comparison of approaches[J]. ASA Journal on Uncertainty Quantification, 2017, 5(1): 334-352. |
| [45] | ADLER R J, TAYLOR J E. Random fields and geometry[M]. Cham: Springer, 2009. |
| [1] | Hua YANG, Shusheng CHEN, Zhenghong GAO, Quanfeng JIANG, Wei ZHANG. Rotor aerodynamic data fusion based on Bayesian framework [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960-128960. |
| [2] | Yue DAN, Limin GAO, Huawei YU, Ruiyu LI, Qiusheng LUO, Yuyang HAO. Uncertainty quantification of leading-edge radius machining error of compressor cascade considering statistical characteristics of skewness and kurtosis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630366-630366. |
| [3] | Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446-127446. |
| [4] | Xinqian ZHENG, Junying WANG, Weina HUANG, Yu FU, Ronghui CHENG, Hongyang XIONG. Uncertainty⁃based design system for aeroengines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27099-027099. |
| [5] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Stall separation optimization and analysis of middle wing section on specially configured laminar flight [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526765-526765. |
| [6] | JIANG Lihong, RAO Hanyue, LAN Xiayu, YANG Tihao, GENG Jianzhong, BAI Junqiang. Aerodynamic design and comprehensive benefit impact of hybrid laminar flow wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526791-526791. |
| [7] | NIE Han, SONG Wenping, HAN Zhonghua, CHEN Jianqiang, DUAN Maochang, WAN Bingbing. Automatic transition prediction for natural-laminar-flow wing design of supersonic transports [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526342-526342. |
| [8] | CHEN Yifu, WANG Yiwen, DENG Yiju, WANG Bo, BAI Junqiang, LU Lei. Experiment and numerical simulation of natural laminar flow wing glove [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526793-526793. |
| [9] | CAO Fan, ZHANG Meifang, HU Xiao, TANG Zhili. Natural laminar flow optimization and transition sensitivity analysis of axisymmetric nacelle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527330-527330. |
| [10] | HUANG Jiangtao, LIU Gang, GAO Zhenghong, ZHOU Zhu, CHEN Zuobin, JIANG Xiong. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623404-623404. |
| [11] | ZHOU Suting, LYU Zhenzhou, LING Chunyan, WANG Yanping. Meta-IS-AK algorithm for estimating global reliability sensitivity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223088-223088. |
| [12] | SHI Zhaoyin, LYU Zhenzhou, LI Luyi, WANG Yanping. Cross-entropy importance sampling method based on adaptive Kriging model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223123-223123. |
| [13] | ZHU Zhen, SONG Wenping, HAN Zhonghua. Automatic transition prediction for wing-body configurations using dual eN method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 121707-121707. |
| [14] | SONG Fuqiang, YAN Chao, MA Baofeng, JU Shengjun. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 121519-121519. |
| [15] | HAN Zhonghua, WANG Shaonan, HAN Li, LIU Fangliang, XU Jianhua, SONG Wenping. A novel method for automatic transition prediction of flows over airfoils based on dynamic mode decomposition [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 120034-120034. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

