ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (5): 623404-623404.doi: 10.7527/S1000-6893.2019.23404
• Specical Topic of Numerical Optimization and Design of Aircraft Aerodynamic Shape • Previous Articles Next Articles
HUANG Jiangtao1, LIU Gang1, GAO Zhenghong2, ZHOU Zhu1, CHEN Zuobin1, JIANG Xiong1
Received:
2019-08-26
Revised:
2019-09-10
Online:
2020-05-15
Published:
2019-10-10
Supported by:
CLC Number:
HUANG Jiangtao, LIU Gang, GAO Zhenghong, ZHOU Zhu, CHEN Zuobin, JIANG Xiong. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623404-623404.
[1] | JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3:233-260. |
[2] | GILES M B, DUTA M C. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205. |
[3] | CARPENTIERI G. An adjoint-based shape-optimization method for aerodynamic design[D]. Delft:Delft Technische Universiteit,2009. |
[4] | AMOIGNON O, BERGGREN M.Adjoint of a median-dual finite-volume scheme application to transonic aerodynamic shape optimization[R]. Uppsala:Uppsala University,2006 |
[5] | REUTHER J. Aerodynamic shape optimization using control theory[D]. Davis:University of California,1996. |
[6] | 黄江涛,高正红,白俊强,等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报,2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese). |
[7] | 王超,高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学:技术科学,2015, 45(6):643-653. WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica:Technologica, 2015, 45(6):643-653(in Chinese). |
[8] | FANG X M, ZHANG Y F, CHEN H X. Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm:AIAA-2016-3833[R]. Reston:AIAA, 2016. |
[9] | HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1):31-47. |
[10] | ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451. |
[11] | 黄礼铿,高正红,张德虎. 基于变可信度代理模型的气动优化[J]. 空气动力学学报,2013, 31(6):783-788. HUANG L K, GAO Z H, ZHANG D H. Aerodynamic optimization based on multi-fidelity surrogate[J]. Acta Aerodynamica Sinica, 2013, 31(6):783-788(in Chinese). |
[12] | 韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报,2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic shape optimization of large civil aircraft wing using surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese). |
[13] | WALTHER B, NADARAJAH S. Constrained adjoint-based aerodynamic shape optimization of a single stage transonic compressor[J]. Journal of Turbomachinery, 2013, 135(2):021017. |
[14] | NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructrued meshes[J]. AIAA Journal, 2002,40(6):1155-1163. |
[15] | DWIGHT R P, BREZILLON J. Effect of various approximations of the discrete adjoint on gradient-based optimization:AIAA-2006-0690[R]. Reston:AIAA, 2006. |
[16] | CARRIER G, DESTARAG D. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston:AIAA, 2014. |
[17] | QIN N, WONG W S,MOIGNE A L. Three-dimensional contour bumps for transonic wing drag reduction[J] Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008,222(5):619-629 |
[18] | MARTINS J R R A. A coupled-adjoint method for high-fidelity[M]//Aero-structural Optimization. Stanford:Stanford University,2002. |
[19] | MADER C A, KENWAY G K W, MARTINS J R R A. Towards high-fidelity aerostructural optimization using a coupled adjoint approach[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2008. |
[20] | KASIDIT L, ANTONY J. Case studies in aero-structural wing planform and section optimization:AIAA-2004-5372[R]. Reston:AIAA, 2004. |
[21] | MOHAMMAD A, JOL B. Shape optimization using the aerostructural coupled adjoint approach for viscous flows[M]//Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011 |
[22] | MERYEM M, JACQUES P, G'ERALD C. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods:AIAA-2008-5863[R]. Reston:AIAA, 2008. |
[23] | GHAZLANE I, CARRIER G, DUMONT A. Aerostructural adjoint method for flexible wing optimization:AIAA-2012-1924[R]. Reston:AIAA, 2012. |
[24] | KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1):144-160. |
[25] | 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese). |
[26] | LIOU M F, KIM H. Aerodynamic design of integrated propulsion-airframe configuration of the hybrid wingbody aircraft:AIAA-2017-3411[R]. Reston:AIAA, 2017. |
[27] | VINCENT P, SIVA N. Efficient reduced-radial basis function-based mesh deformation within an adjoint-based aerodynamic optimization framework[J]. Journal of Aircraft, 2016,53(6):1905-1921. |
[28] | LYU Z J, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015,53(4):968-984 |
[29] | LEE B J, LIU M S. Optimizing a boundary-layer-ingestion offset inlet by discrete adjoint approach[J]. AIAA Journal, 2010,48(9):2008-2016. |
[30] | YI J, KIM C. Adjoint-based design optimization of vortex generator in an S-shaped subsonic inlet[J]. AIAA Journal, 2012,48(9):2492-2507. |
[31] | HEATHER K, FRANCISCO P. Adjoint-based optimization of a hypersonic inlet:AIAA-2015-3060[R]. Reston:AIAA, 2015. |
[32] | HEATH C M, GRAY J S. Aerodynamic shape optimization of a dual-stream supersonic plug nozzle[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA,2005. |
[33] | BENJAMIN W,SIVA N. Constrained adjoint-based aerodynamic shape optimization in a multistage turbomachinery environment:AIAA-2012-0062[R]. Reston:AIAA, 2012. |
[34] | 左英桃,高正红,詹浩.基于N-S方程和离散共轭方法的气动设计方法研究[J].空气动力学学报,2009,27(1):67-72 ZUO Y T, GAO Z H, ZHAN H. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2009, 27(1):67-72(in Chinese). |
[35] | 熊俊涛,乔志德,杨旭东,等.基于黏性伴随方法的跨声速机翼气动优化设计[J].航空学报,2007,28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese). |
[36] | 屈崑,李记超,蔡晋生.CFD数学模型的线性化方法及其应用[J]. 航空学报,2015,36(10):3218-3227. QU K, LI J C, CAI J S. Method of linearizing computational fluid dynamics model and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3218-3227(in Chinese). |
[37] | 高宜胜,伍贻兆,夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013,31(2):244-249. GAO Y S, WU Y Z, XIA J. A discrete adjoint-based approach for airfoil optimization on unstructured meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2):244-249(in Chinese). |
[38] | 李彬,邓有奇,唐静,等.基于三维非结构混合网格的离散伴随优化方法[J].航空学报,2014,35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese). |
[39] | 黄江涛,周铸,高正红, 等. 大型民用飞机气动外形典型综合设计方法分析[J]. 航空学报, 2019,40(2):522369. HUANG J T, ZHOU Z, GAO Z H, et al. The analysis of a typical integrated design method for large civil aircraft aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522369(in Chinese). |
[40] | 黄江涛,周铸,余婧, 等. 考虑飞行器动力系统进排气效应的设计参数灵敏度分析研究[J]. 推进技术, 2019, 40(2):250-258. HUANG J T, ZHOU Z, YU J, et al. Sensitivity analysis of design variables considering intake and exhaust effe-cts[J]. Journal of Propulsion Technology, 2019, 40(2):250-258(in Chinese). |
[41] | 宋红超, 李鑫, 季路成. 基于离散型伴随方法的单边膨胀喷管优化设计研究[J]. 工程热物理学报, 2017,38(9):1849-1854. SONG H C, LI X, JI L C. Research on the optimization of unilateral expansion nozzle based on the discrete adjoint method[J]. Journal of Engineering Thermophysics, 2017,38(9):1849-1854(in Chinese). |
[42] | 张朝磊, 厉海涛,丰镇平. 基于离散伴随方法的透平叶栅气动优化[J]. 工程热物理学报, 2012, 33(1):47-50. ZHANG C L, LI H T, FENG Z P. Aerodynamic optimization design of turbomachinery cascade based on discrete adjoint method[J]. Journal of Engineering Thermophysics, 2012,33(1):47-50(in Chinese). |
[43] | 唐方明,余佳,李伟伟, 等. 采用排间界面静压约束伴随方法的多级压气机叶片优化[J]. 航空动力学报, 2015,30(8):1869-1874. TANG F M, YU J, LI W W, et al. Blade shape optimization of multistage compressor using adjoint method with static pressure constraint at interfaces between rows[J]. Journal of Aerospace Power, 2015,30(8):1869-1874(in Chinese). |
[44] | 刘浩,张雷,李霄琳. 基于伴随方法的叶片三维气动外形优化设计[J]. 中南大学学报(自然科学版), 2016,47(2):436-442. LIU H, ZHANG L, LI X L. Three dimensional aerodynamic shape optimum design for blade based on adjoint method[J]. Journal of Central South University (Science and Technology), 2016,47(2):436-442(in Chinese). |
[45] | 马灿,苏欣荣,袁新.单级跨音压气机非定常伴随气动优化[J]. 工程热物理学报,2017,38(3):504-508. MA C, SU X R, YUAN X. Unsteady adjoint aerodynamic optimization of a transonic compressor stage[J]. Journal of Engineering Thermophysics, 2017,38(3):504-508(in Chinese). |
[46] | LUO J Q, LIU F. Multi-objective design optimization of a transonic compressor rotor using an adjoint equation method:AIAA-2013-2732[R]. Reston:AIAA, 2012. |
[47] | 阮颖铮. 雷达截面与隐身技术[M]. 北京:国防工业出版社, 1998. RUAN Y Z. Radar cross section and stealth technology[M]. Beijing:National Defense Industry Press, 1998(in Chinese) |
[48] | 李洁, 刘战合, 王英,等. 飞行器目标RCS计算方法适用性研究[J]. 战术导弹技术, 2012(1):38-42. LI J, LIU Z H, WANG Y, et al. Research on the applicability of the approach for calculating the RCS of aircraft target[J]. Tactical Missile Technology, 2012(1):38-42(in Chinese). |
[49] | GAO Z H, WANG M L. An efficient algorithm for calculating aircraft RCS based on the geometrical characterist-ics[J]. Chinese Journal of Aeronautics, 2008, 21(4):296-303. |
[50] | GEORGIEVA N K, GLAVIC S, BAKR M H, et al. Feasible adjoint sensitivity technique for EM design optimization[J]. IEEE Transactions on Microwave Theory & Techniques, 2002, 50(12):2751-2758. |
[51] | NIKOLOVA N K, SAFIAN R, SOLIMAN E A, et al. Accelerated gradient based optimization using adjoint sensitivities[J]. IEEE Transactions on Antennas & Propagation, 2004, 52(8):2147-2157. |
[52] | ZHOU L, HUANG J T. Radar cross section gradient calculation based on adjoint equation of method of moment[C]//Asia-Pacific International Symposium on Aerospace Technology, 2018. |
[53] | 张玉, 赵勋旺, 陈岩. 计算电磁学中的超大规模并行矩量法[M]. 西安:西安电子科技大学出版社, 2016. ZHANG Y, ZHAO X W, CHEN Y. Hyper-large-scale parallel method of moment in computational electromagnetics[M]. Xi'an:Xidian University Press, 2006(in Chinese). |
[54] | 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010(2):125-131. SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering, 2010(2):125-131(in Chinese). |
[55] | 李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学:物理学力学天文学, 2014, 44(3):234-248. LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2014,44(3):234-248(in Chinese). |
[56] | RALLABHANDI S K. Advanced sonic boom prediction using augmented Burger's equation:AIAA-2011-1278[R]. Reston:AIAA, 2011. |
[57] | 钱炜祺,何开锋. 三维稳态热传导逆问题反演算法研究[J]. 力学学报,2008, 40(5):611-618. QIAN W Q, HE K F. Inverse estimation of heat source term in three-dimensional transient heat condution problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5):611-618. |
[58] | KOUHI M, HOUZEAUX G. Implementation of discrete adjoint method for parameter sensitivity analysis in chemically reacting flows:AIAA-2016-1909[R].Reston:AIAA,2016. |
[59] | ABU-ZURAYK M. An aeroelastic coupled adjoint approach for multi-point design in viscous-flows[D].Braunschweig:DLR, 2016. |
[60] | ABU-ZURAYK M, BREZILLON J. Shape optimization using the aerostructural coupled adjoint approach for viscous flows[M]//Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011. |
[61] | MARCELET M, PETER J, CARRIER G. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods:AIAA-2008-5863[R]. Reston:AIAA, 2008. |
[62] | MVLLE L, VERSTRAETE T. Multidisciplinary adjoint optimization of trubomachinery components including aerodynamic and stress performance:AIAA-2017-4083[R]. Reston:AIAA, 2017. |
[63] | MISHRA A, MANI K. Time dependent adjoint-based optimization for coupled fluid-structure problems[J]. Journal of Computational Physics, 2015, 292:253-271. |
[64] | 黄江涛,周铸,刘刚,等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):121731. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121731(in Chinese). |
[65] | HUANG J T, YU J, GAO Z H, et al. Multi-disciplinary optimization of large civil aircraft using a coupled aero-structural adjoint approach[C]//Asia-Pacific International Symposium on Aerospace Technology, 2018. |
[66] | FABIANO E, MISHRA A, MAVRIPLIS D. Time-dependent aero-acoustic adjoint-based shape optimization of helicopter rotors in forward flight:AIAA-2016-1910[R]. Reston:AIAA, 2016. |
[67] | 邱昇. 基于伴随方法、梯度增强Kriging方法的涡扇发动机进气道减噪高效优化方法[J].科学技术与工程,2018,18(19):289-295. QIU S.Efficient noise reduction optimization of turbofan engine intake based on the adjoint method and gradient enhanced Kriging method[J].Science Technology and Engineering, 2018, 18(19):289-295(in Chinese). |
[68] | THOMAS C. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA,1972. |
[69] | PLOTKIN K J. Computer models for sonic boom analysis:PCBoom4, CABoom, BooMap, COR-Boom[M]. New York:Wyle, 2002. |
[70] | NADARAJAH S K, JAMESON A, ALONSO J J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow:AIAA-2002-5547[R]. Reston:AIAA, 2002. |
[71] | RALLABHANDI S K. Sonic boom adjoint methodology and its applications:AIAA-2011-3497[R]. Reston:AIAA, 2011. |
[72] | 冯晓强,李占科,宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报,2011, 32(11):1980-1986. FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautic et Atronautica Sinica, 2011, 32(11):1980-1986(in Chinese). |
[73] | 冯晓强,李占科,宋笔锋. 超声速飞机低音爆布局混合优化方法研[J]. 航空学报,2013,34(8):1768-1777. FENG X Q, LI Z K, SONG B F. Hybrid optimization approach research or low sonic boom supersonic aircraft configuration[J]. Acta Aeronautic et Atronautica Sinica, 2013,34(8):1768-1777(in Chinese). |
[74] | 王刚,马博平,雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报,2018,39(1):121458. WANG G,MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several bench mark cases[J]. Acta Aeronautic et Atronautica Sinica, 2018,39(1):121458(in Chinese). |
[75] | 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautic et Atronautica Sinica, 2018, 39(7):122039(in Chinese). |
[76] | 黄江涛, 张绎典, 高正红. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019,40(5):122505. HUANG J T, ZHANG Y D, GAO Z H. The supersonic jet sonicboom optimization based on flow/sonicboom coupled adjoint equations[J]. Acta Aeronautic et Atronautica Sinica, 2019,40(5):122505(in Chinese). |
[77] | SILVA W A, SANETRIKY M D, CHWALOWSKIZ P. Using FUN3D for aeroelastic, sonic boom, and AeroPropulsoServoElastic (APSE) analyses of a supersonic configuration[C]//Dynamics Specialists Conference, 2015. |
[78] | MANI K, MAVRIPLIS D J. Adjoint-based sensitivity formulation for fully coupled unsteady aeroelasticity problems[J]. AIAA Journal, 2009, 47(8):1902-1915. |
[79] | BERAN P, STANFORD B, SCHROCK C. Uncertainty quantification in aeroelasticity[J]. Annual Review of Fluid Mechanics, 2017, 49:361-386. |
[80] | RODERICK O, ANITESCU M, FISCHER P. Polynomial regression approaches using derivative information for uncertainty quantification[J]. Nuclear Science and Engineering, 2010, 164(2):122-139. |
[81] | ALLEN M, MAUTE K. Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(30-33):3472-3495. |
[82] | ALLEN M, MAUTE K. Reliability-based design optimization of aeroelastic structures[J]. Structural and Multidisciplinary Optimization, 2004, 27(4):228-242. |
[83] | STANFORD B, BERA P. Direct flutter and limit cycle computations of highly flexible wings for efficient analysis and optimization[J]. Journal of Fluids and Structures, 2013, 36:111-123. |
[84] | MANI K, MAVRIPLIS D J. Unsteady discrete adjoint formulation for two-dimensional flow problems with deforming meshes[J]. AIAA Journal, 2008, 46(6):1351-1364. |
[85] | NIKBAY M, KURUT M N. Reliability based multidisciplinary optimization of aeroelastic systems with structural and aerodynamic uncertainties[J]. Journal of Aircraft, 2013, 50(3):708-715. |
[86] | STANFORD B, BERAN P. Minimum-mass panels under probabilistic aeroelastic flutter constraints[J]. Finite Elements in Analysis and Design, 2013, 70-71:15-26. |
[87] | VERHOOSEL C V, SCHOLCZ T P, HULSHOFF J, et al. Uncertainty and reliability analysis of fluid-structure stability boundaries[J]. AIAA Journal, 2009, 47(1):91-104. |
[88] | MANAN A, COOPER J. Design of composite wings including uncertainties:A probabilistic approach[J]. Journal of Aircraft, 2009, 46(2):601-607. |
[89] | SCARTH C, COOPER J E, WEAVER P M. et al. Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters[J]. Composite Structures, 2014, 116:84-93. |
[90] | HOSDER S, WALTERS R, BALCH M. Efficient uncertainty quantification applied to the aeroelastic analysis of a transonic wing[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008. |
[91] | MISSOUM S, DRIBUSCH C, BERAN P. Reliability-based design optimization of nonlinear aeroelasticity problems[J]. Journal of Aircraft, 2010, 47(3):992-998. |
[92] | XIU D B, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. Siam Journal on Scientific Computing, 2002, 24(2):619-644. |
[93] | KESHAVARZZADEH V, MEIDANI H, TORTORELLI D A. Gradient based design optimization under uncertainty via stochastic expansion methods[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306:47-76. |
[94] | ZHAO H, GAO Z, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(3):685-732. |
[1] | Hua YANG, Shusheng CHEN, Zhenghong GAO, Quanfeng JIANG, Wei ZHANG. Rotor aerodynamic data fusion based on Bayesian framework [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960-128960. |
[2] | Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446-127446. |
[3] | Xinqian ZHENG, Junying WANG, Weina HUANG, Yu FU, Ronghui CHENG, Hongyang XIONG. Uncertainty⁃based design system for aeroengines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27099-027099. |
[4] | ZHOU Zhu, HUANG Jiangtao, GAO Zhenghong, HUANG Yong, CHEN Zuobin, YU Jing. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522370-522370. |
[5] | HUANG Jiangtao, ZHOU Zhu, LIU Gang, GAO Zhenghong, HUANG Yong, WANG Yuntao. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(5): 121731-121731. |
[6] | SONG Fuqiang, YAN Chao, MA Baofeng, JU Shengjun. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(2): 121519-121519. |
[7] | XU Ming, LI Jianbo, PENG Minghua, LIU Cheng. Parameter design of helicopter with optimum speed rotor based on uncertainty optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2170-2179. |
[8] | YU Jia, YANG Pengfei, YAN De. Influence analysis of hypersonic flight vehicle model uncertainty [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(1): 192-200. |
[9] | CHEN Qi, WANG Zhongyuan, CHANG Sijiang, SHU Jingrong. Optimal Trajectory Design Under Uncertainty for a Gliding Guided Projectile [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(9): 2593-2604. |
[10] | XU Lincheng, WANG Gang, WU Jie, YE Zhengyin. Uncertainty Analysis of Airfoil Wind Tunnel Tests with Automatic Differentiation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(8): 2102-2111. |
[11] | LIU Fang, FENG Yongxin. A Long Code Acquisition Algorithm on Resolve Time-frequency Uncertainty Problem [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1924-1933. |
[12] | JU Long, BAI Junqiang, SUN Zhiwei, CHEN Song, LI Quan. Integrated Aero-structure Design of Circulation Distribution for Commercial Aircraft Wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2725-2732. |
[13] | ZHANG Baoqiang, CHEN Guoping, GUO Qintao. Solution of Model Validation Thermal Challenge Problem Using a Bayesian Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(7): 1202-1209. |
[14] | Dai Jing;Zhang Ping;Li Xingshan;Yu Jinsong. Novel Approach for Aviation Electromechanical System Testability Modeling and Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(2): 277-284. |
[15] | Zhu Ziqiang;Wang Xiaolu;Wu Zongcheng;Li Yun. Multi-disciplinary Optimization of Strut-braced Wing Transonic Transport [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341