[1] 刘凯礼, 司江涛, 赵克良, 等. 大涵道比发动机通流短舱阻力特性修正数值研究[J]. 推进技术, 2019, 40(5):978-985. LIU K L, SI J T, ZHAO K L, et al. Numerical study of large bypass ratio engine through flow nacelle on drag characteristic correction[J]. Journal of Propulsion Technology, 2019, 40(5):978-985(in Chinese). [2] QUADRIO M, RICCO P. The laminar generalized Stokes layer and turbulent drag reduction[J]. Journal of Fluid Mechanics, 2011, 667:135-157. [3] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [4] YOUNGHANS J, LAHTI D. Analytical and experimental studies on natural laminar flow nacelles[C]//22nd Aerospace Sciences Meeting. Reston:AIAA, 1984. [5] RADESPIEL R, HORSTMANN K H, REDEKER G. Feasibility study on the design of a laminar flow nacelle[J]. Journal of Aircraft, 2015, 10(11):959-965. [6] LIN Y J, ROBINSON T, EARLY J, et al. Implementation of menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835. [7] VERMEERSCH O, BOUTEILLER X. Numerical study of laminar nacelles:Natural and hybrid laminar flow designs[J]. International Journal of Engineering Systems Modelling & Simulation, 2014, 6(3/4):191-204. [8] BARRY B, PARKE S J, BOWN N W, et al. The flight testing of natural and hybrid laminar flow nacelles[C]//American Society of Mechanical Engineers. Netherlands:ASME, 1994. [9] E HASTINGS SCHOENSTER J, OBARA C, et al. Flight research on natural laminar flow nacelles:A progress report[C]//22nd Joint Propulsion Conference. Reston:AIAA, 2014. [10] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12. [11] MALIK M R, CROUCH J D, SARIC W S, et al. Application of drag reduction techniques to transport aircraft[M]. New Jersey:John Wiley & Sons Limited, 2015. [12] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese). [13] 孟晓轩, 白俊强, 张美红, 等. 基于双eN方法的短舱层流转捩影响因素[J]. 航空学报, 2019, 40(11):123040. MENG X X, BAI J Q, ZHANG M H, et al. Laminar transition influencing factors of nacelle based on double eN method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):123040(in Chinese). [14] WANG S Y, SUN G, LI C H. Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm[J]. Journal of Aerospace Engineering, 2019, 32(4):06019001. [15] 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术, 2019, 30(9):63-72. DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology, 2019, 30(9):63-72(in Chinese). [16] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422. [17] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [18] 乔磊, 白俊强, 华俊, 等. 扩散作用对γ-Reθt模型转捩预测的影响[J]. 航空计算技术, 2013, 43(5):78-81. QIAO L, BAI J Q, HUA J, et al. Influence of diffusion effects on γ-Reθt ransition prediction[J]. Aeronautical Computing Technique, 2013, 43(5):78-81(in Chinese). [19] LANGTRY R B.A correlation based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University Stuttgart, 2006. [20] Somers D M. Design and experimental results for a natural laminar flow airfoil for general aviation applications:NASA-TP-1861[R]. Washington, D.C.:NASA,1981. [21] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [22] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the sixth AIAA CFD drag prediction workshop:CRM cases 2 to 5[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [23] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4):625-633. GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese). [24] 闫海津, 杜玺. 一种可变流量系数的通气短舱匹配方法[J]. 航空学报, 2018, 39(12):122379. YAN H J, DU X. A matching method for variable mass flow ratio for through-flow nacelle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122379(in Chinese). [25] GOLDBERG D E, VOESSNER S. Optimizing global-local search hybrids[C]//Genetic and Evolutionary Computation Conference. San Francisco:Morgan Kaufmann, 1999:220-228. [26] VICINI A, QUAGLIARELLA D. Airfoil and wing design through hybrid optimization strategies[J]. AIAA Journal, 1999, 37(5):634-641. [27] TANG Z L, CHEN Y B, ZHANG L H. Natural laminar flow shape optimization in transonic regime with competitive Nash game strategy[J]. Applied Mathematical Modelling, 2017, 48:534-547. [28] TANG Z L, HU X, PÉRIAUX J. Multi-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithms[J]. Archives of Computational Methods in Engineering, 2020, 27(3):939-975. [29] BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5):1190-1208. [30] OPARA K R, ARABAS J. Differential Evolution:A survey of theoretical analyses[J]. Swarm and Evolutionary Computation, 2019, 44:546-558. [31] HOLLAND J. Adaptation in natural and artificial systems[M]. Cambridge:MIT Press, 1992. |