ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (8): 127446.doi: 10.7527/S1000-6893.2022.27446
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yifu CHEN1, Yuhang MA1, Qingsheng LAN2, Weiping SUN3, Yayun SHI4, Tihao YANG1(
), Junqiang BAI1
Received:2022-05-15
Revised:2022-06-06
Accepted:2022-06-28
Online:2023-04-25
Published:2022-07-08
Contact:
Tihao YANG
E-mail:yangtihao@nwpu.edu.cn
Supported by:CLC Number:
Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446.
Table 3
Subsonic airfoil: Monte Carlo and PCE calculation results
| Method | CFD evaluations | ||||||
|---|---|---|---|---|---|---|---|
| MC | 5 000 | 0.196 4 | 0.009 151 | -3.138×10-4 | 0.025 96 | 5.642×10-5 | 1.117×10-4 |
| MC | 10 000 | 0.196 4 | 0.009 151 | -3.138×10-4 | 0.026 03 | 5.668×10-5 | 1.117×10-4 |
| PCE(p=1) | 4 | 0.196 3 | 0.009 148 | -3.061×10-4 | 0.026 28 | 5.438×10-5 | 1.172×10-4 |
| PCE(p=2) | 9 | 0.196 4 | 0.009 152 | -3.127×10-4 | 0.026 34 | 5.704×10-5 | 1.119×10-4 |
| PCE(p=3) | 16 | 0.196 4 | 0.009 152 | -3.061×10-4 | 0.026 32 | 6.409×10-5 | 1.256×10-4 |
| GPCE(p=1) | 4 | 0.196 3 | 0.009 147 | -3.146×10-4 | 0.026 31 | 5.720×10-5 | 1.085×10-4 |
| GPCE(p=2) | 9 | 0.196 4 | 0.009 151 | -3.142×10-4 | 0.026 31 | 5.669×10-5 | 1.127×10-4 |
| GPCE(p=3) | 16 | 0.196 4 | 0.009 151 | -3.141×10-4 | 0.025 94 | 5.720×10-5 | 1.118×10-4 |
Table 4
Transonic airfoils: Monte Carlo and PCE calculation results
| Method | CFD evaluations | ||||||
|---|---|---|---|---|---|---|---|
| MC | 5 000 | 0.823 7 | 0.023 11 | 0.106 9 | 0.047 81 | 0.007 812 | 0.009 361 |
| MC | 10 000 | 0.823 3 | 0.023 12 | 0.106 9 | 0.047 77 | 0.007 860 | 0.009 247 |
| PCE(p=1) | 4 | 0.846 1 | 0.022 48 | 0.107 9 | 0.042 38 | 0.009 672 | 0.013 290 |
| PCE(p=2) | 9 | 0.815 3 | 0.022 58 | 0.105 1 | 0.062 18 | 0.009 673 | 0.013 620 |
| PCE(p=3) | 16 | 0.821 6 | 0.023 24 | 0.106 9 | 0.074 70 | 0.006 973 | 0.009 014 |
| PCE(p=4) | 25 | 0.821 9 | 0.023 14 | 0.106 8 | 0.051 86 | 0.007 205 | 0.008 989 |
| GPCE(p=1) | 4 | 0.844 4 | 0.022 58 | 0.107 9 | 0.041 37 | 0.009 283 | 0.011 230 |
| GPCE(p=2) | 9 | 0.817 3 | 0.023 35 | 0.106 7 | 0.060 30 | 0.009 216 | 0.011 810 |
| GPCE(p=3) | 16 | 0.816 5 | 0.022 97 | 0.106 9 | 0.062 20 | 0.007 078 | 0.009 289 |
| GPCE(p=4) | 25 | 0.827 7 | 0.023 12 | 0.107 2 | 0.047 89 | 0.007 809 | 0.009 438 |
Fig. 26
Low subsonic deterministic and uncertain optimization history(Black circle line: DeOpt, change of objective function in deterministic optimization; black triangle line: UMOpt, change of objective function in uncertainty optimization; gray circle line: UMOpt, change of drag coefficient of mean flow field in uncertainty optimization)
Fig. 30
Transonic deterministic and uncertain optimization history(Black circle line: DeOpt, change of objective function in deterministic optimization; black triangle line: UMOpt, change of objective function in uncertainty optimization; gray circle line: UMOpt, change of drag coefficient of mean flow field in uncertainty optimization)
| 1 | GIESING J, BARTHELEMY J F. A summary of industry MDO applications and needs[C]∥7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998. |
| 2 | ZANG T A, HEMSCH M J, HILBURGER M W,et al. Needs and opportunities for uncertaintybased multidisciplinary design methods for aerospace vehicles[R]. Washington, D. C.:NASA Langley Research Center, 2002. |
| 3 | HUYSE L, LEWIS R M. Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions[M]. Washington, D.C.: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center 2001. |
| 4 | WALTERS R W, HUYSE L. Uncertainty analysis for fluid mechanics with applications[R].Washington, D. C.:NASA Langley Research Center, 2002. |
| 5 | CHEN W, JIN R C, SUDJIANTO A. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty[J]. Journal of Mechanical Design, 2005, 127(5): 875-886. |
| 6 | CAFLISCH R E. Monte Carlo and quasi-Monte Carlo methods[J]. Acta Numerica, 1998, 7: 1-49. |
| 7 | PELLETIER D, TURGEON E, LACASSE D, et al. Adaptivity, sensitivity, and uncertainty: Toward standards of good practice in computational fluid dynamics[J]. AIAA Journal, 2003, 41(10): 1925-1933. |
| 8 | LUCKRING J, HEMSCH M, MORRISON J. Uncertainty in computational aerodynamics[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
| 9 | SCHAEFER J A, ROMERO V J, SCHAFER S R, et al. Approaches for quantifying uncertainties in computational modeling for aerospace applications[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 10 | ROELOFS M, VOS R. Technology evaluation and uncertaintybased design optimization: A review[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston:AIAA,2018. |
| 11 | KNIO O M, LE MAÎTRE O P. Uncertainty propagation in CFD using polynomial chaos decomposition[J]. Fluid Dynamics Research, 2006, 38(9): 616-640. |
| 12 | NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41: 35-52. |
| 13 | LOEVEN G A, WITTEVEEN J S, BIJL H. Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
| 14 | SIMON F, GUILLEN P, SAGAUT P, et al. A gPC-based approach to uncertain transonic aerodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17-20): 1091-1099. |
| 15 | CHASSAING J C, LUCOR D. Stochastic investigation of flows about airfoils at transonic speeds[J]. AIAA Journal, 2010, 48(5): 938-950. |
| 16 | YAMAZAKI W. Stochastic drag analysis via polynomial chaos uncertainty quantification[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
| 17 | SUGA Y, YAMAZAKI W. Aerodynamic uncertainty quantification of supersonic biplane airfoil via polynomial chaos approach[C]∥17th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2015. |
| 18 | HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. |
| 19 | WEST T K, PHILLIPS B D. Multifidelity uncertainty quantification of a commercial supersonic transport[J]. Journal of Aircraft, 2020, 57(3): 491-500. |
| 20 | GHISU T, PARKS G T, JARRETT J P, et al. Adaptive polynomial chaos for gas turbine compression systems performance analysis[J]. AIAA Journal, 2010, 48(6): 1156-1170. |
| 21 | ABRAHAM S, TSIRIKOGLOU P, LACOR C, et al. Uncertainty quantification in industrial turbo-machinery design using sparse polynomial chaos expansions[C]∥ 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018. |
| 22 | LI Z H, LIU Y M, AGARWAL R K. Uncertainty quantification of geometric and flow variables affecting the performance of a transonic axial compressor[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
| 23 | LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. |
| 24 | DI STEFANO M A, HOSDER S, BAURLE R A. Effect of turbulence model uncertainty on scramjet strut injector flow field analysis[J]. Computers & Fluids, 2021, 229: 105104. |
| 25 | GUO Z T, CHU W L. Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(10): 5719-5735. |
| 26 | HUANG M, LI Z G, LI J, et al. Uncertainty quantification and sensitivity analysis of aerothermal performance for the turbine blade squealer tip[J]. International Journal of Thermal Sciences, 2022, 175: 107460. |
| 27 | 王晓东, 康顺. 多项式混沌法求解随机Burgers方程[J]. 工程热物理学报, 2010, 31(3): 393-398. |
| WANG X D, KANG S. Solving stochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics, 2010, 31(3): 393-398 (in Chinese). | |
| 28 | 王晓东, 康顺. 多项式混沌方法在随机方腔流动模拟中的应用[J]. 中国科学,2011,41(6):790-798. |
| WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J].Sci China Tech Sci, 2011, 41(6):790-798 (in Chinese). | |
| 29 | 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4): 587-595. |
| WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595 (in Chinese). | |
| 30 | ZHAO H, GAO Z H, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858. |
| 31 | SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification across design space using spatially accurate polynomial chaos[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 32 | ZEIN S. A polynomial chaos expansion trust region method for robust optimization[J]. Communications in Computational Physics, 2013, 14(2): 412-424. |
| 33 | WANG X D, HIRSCH C, LIU Z Y, et al. Uncertainty-based robust aerodynamic optimization of rotor blades[J]. International Journal for Numerical Methods in Engineering, 2013, 94(2): 111-127. |
| 34 | PALAR P S, TSUCHIYA T, PARKS G. Decomposition-based evolutionary aerodynamic robust optimization with multi-fidelity point collocation non-intrusive polynomial chaos[C]∥17th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2015. |
| 35 | 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018. |
| WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
| 36 | PADULO M, CAMPOBASSO M S, GUENOV M D. Novel uncertainty propagation method for robust aerodynamic design[J]. AIAA Journal, 2011, 49(3): 530-543. |
| 37 | SHANKARAN S, JAMESON A. Robust optimal control using polynomial chaos and adjoints for systems with uncertain inputs[C]∥20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
| 38 | SCHILLINGS C, SCHULZ V. On the influence of robustness measures on shape optimization with stochastic uncertainties[J]. Optimization and Engineering, 2015, 16(2): 347-386. |
| 39 | RALLABHANDI S K, WEST T K, NIELSEN E J. Uncertainty analysis and robust design of low-boom concepts using atmospheric adjoints[J]. Journal of Aircraft, 2017, 54(3): 902-917. |
| 40 | BOOPATHY K, KENNEDY G. Semi-intrusive uncertainty propagation and adjoint sensitivity analysis using the stochastic Galerkin method[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
| 41 | SABATER C, GÖRTZ S. Gradient-based aerodynamic robust optimization using the adjoint method and Gaussian processes[M]∥Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Cham: Springer, 2021: 211-226. |
| 42 | MAYEUR J, DUMONT A, DESTARAC D, et al. Reynolds-averaged navier-stokes simulations on NACA0012 and ONERA-M6 wing with the ONERA elsA solver[J]. AIAA Journal, 2016, 54(9): 2671-2687. |
| 43 | FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4): 609-615. |
| 44 | SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979. |
| 45 | 赵轲. 基于CFD的复杂气动优化与稳健设计方法研究[D]. 西安: 西北工业大学, 2015. |
| ZHAO K. Complex aerodynamic optimization and robust design method based on computational fluid dynamics[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). |
| [1] | Xian YI, Jinghao REN, Qingren LAI, Yu LIU, Qiang WANG. Icing characteristics of full-scale multi-element configurations of large aircraft: Computation and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531575-531575. |
| [2] | Shilin HU, Bingzhou CHEN, Wei KANG. Lift improvement mechanism of membrane airfoil using dynamic mode decomposition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130618-130618. |
| [3] | Xianchao MENG, Jun TAO. An airfoil inverse design method based on target testing conditional generative adversarial network [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631182-631182. |
| [4] | Jing WANG, Wei LIU, Hairun XIE, Miao ZHANG, Tuliang MA. Diffusion model-driven multi-objective generative design of supercritical airfoils [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631210-631210. |
| [5] | Ruitao ZHANG, Cong WANG, Jun TAO, Liyue WANG, Gang SUN. Airfoil parameterization method based on latent diffusion model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631180-631180. |
| [6] | Xiangying GUO, Jie XU, Yongchang HUANG. Characteristic analysis of large-scale wavelength protuberances wings near critical angle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730557-730557. |
| [7] | Guangning LI, Kunpeng LEI, Xiaomin AN, Min XU, Yong XU. Numerical flight simulation of an airfoil with time varing Mach number effect acrossing transonic region [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730875-730875. |
| [8] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
| [9] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
| [10] | Hua YANG, Shusheng CHEN, Zhenghong GAO, Quanfeng JIANG, Wei ZHANG. Rotor aerodynamic data fusion based on Bayesian framework [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960-128960. |
| [11] | Yue DAN, Limin GAO, Huawei YU, Ruiyu LI, Qiusheng LUO, Yuyang HAO. Uncertainty quantification of leading-edge radius machining error of compressor cascade considering statistical characteristics of skewness and kurtosis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630366-630366. |
| [12] | Dejun MENG, Wenbin SHI, Jiaxin LIU, Pengfei XU, Dingxi WANG, Xianjun YU. Influence of geometric variation on aerodynamic performance of controlled diffusion airfoil [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630565-630565. |
| [13] | Wei ZHANG, Xutao NIE, Liwei OU, Zhixun XIA, Lei CHEN. Frequency⁃weighted dynamic mode decomposition for trailing edge flapping airfoil flow [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 129846-129846. |
| [14] | Wei WANG, Hao WANG, Ai ZHOU, He FENG. Stepwise optimal design for shape and topology of variable camber wing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 129990-129990. |
| [15] | Sitong LI, Lu XIA, Lin ZHOU, Ke ZHAO. Integrated aerodynamic and high frequency electromagnetic stealth design of airfoil considering coating [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529874-529874. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

