Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (1): 428624-428624.doi: 10.7527/S1000-6893.2023.28624
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Received:
2023-02-27
Revised:
2023-03-29
Accepted:
2023-09-22
Online:
2024-01-15
Published:
2023-11-07
Contact:
Xiaoping WANG
E-mail:levine@nuaa.edu.cn
Supported by:
CLC Number:
Jiqiang GAN, Xiaoping WANG. Surface defect detection of fiber placement based on virtual sample generation[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428624-428624.
Table 3
ConSinGAN other important parameter settings
参数 | 含义 | 设置值 |
---|---|---|
nfc | Number of filters per conv layer | 64 |
ker_size | Kernel size | 3 |
num_layer | Number of layers per stage | 3 |
padd_size | Net pad size | 0 |
nc_im | Image channels | 3 |
noise_amp | Additive noise cont weight | 0.1 |
min_size | Image minimal size at the coarser scale | 25 |
max_size | Image maximal size at the coarser scale | 250 |
train_depth | How many layers are trained if growing | 3 |
lr_g | Learning rate of generator | 0.000 5 |
lr_d | Learning rate of discriminator | 0.000 5 |
beta1 | Beta1 for adam | 0.5 |
lambda_grad | Gradient penalty weight | 0.1 |
alpha | Reconstruction loss weight | 10 |
Table 4
Randomly generated images of different types of defects and quality evaluation of reconstructed images
缺陷类型 | 随机生成图像 | 重建图像 | ||
---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | |
twist | 29.110 6 | 30.418% | 38.214 4 | 95.859% |
wrinkle | 29.192 3 | 30.438% | 36.372 9 | 94.527% |
bridge | 30.436 6 | 62.821% | 39.548 3 | 96.906% |
foreign body | 30.374 7 | 62.275% | 37.348 1 | 93.927% |
gap | 32.057 2 | 69.317% | 41.137 9 | 95.840% |
wire break | 31.464 7 | 74.873% | 39.653 7 | 95.453% |
1 | 原崇新, 李妍, 潘杰, 等. 自动铺丝过程中的典型缺陷及原因分析[J]. 航空制造技术, 2019, 62(4): 66-74. |
YUAN C X, LI Y, PAN J, et al. Typical defects and causes analysis of automated fiber placement[J]. Aeronautical Manufacturing Technology, 2019, 62(4): 66-74 (in Chinese). | |
2 | 张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54-61. |
ZHANG X H, ZHU Y X, ZHANG S Q, et al. Research progress on automated fiber placement technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7): 54-61 (in Chinese). | |
3 | WANIGASEKARA C, OROMIEHIE E, SWAIN A, et al. Machine learning based predictive model for AFP-based unidirectional composite laminates[J]. IEEE Transactions on Industrial Informatics, 2020,16(4): 2315-2324. |
4 | SMITH R, QURESHI Z, SCAIFE R, et al. Limitations of processing carbon fibre reinforced plastic/polymer material using automated fibre placement technology[J]. Reinforced Plastics & Composites, 2016, 35(21): 1527-1542. |
5 | HEINECKE F, WILLBERG C. Manufacturing-induced imperfections in composite parts manufactured via automated fiber placement[J]. Composites Science, 2019, 3(2): 56-56. |
6 | 丁希仑, 罗伟恒, 刘斐, 等. 自动铺丝成型构件缺陷在线检测技术进展[J]. 北京航空航天大学学报, 2022, 48(9): 1721-1733. |
DING X L, LUO W H, LIU F, et al. Review on automated fiber placement induced defects and their online monitoring technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1721-1733 (in Chinese). | |
7 | 倪金辉. 基于机器视觉的预浸纱缺陷检测系统的研究[D]. 南京: 南京航空航天大学, 2015. |
NI J H, Defect detection system for prepreg based on machine vision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
8 | 康硕, 柯臻铮, 王璇, 等. 基于红外和可见光图像融合的铺丝缺陷检测方法[J]. 航空学报, 2022, 43(3): 425187. |
KANG S, KE Z Z, WANG X, et al. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 425187 (in Chinese). | |
9 | 蔡志强, 肖军, 文立伟, 等. 基于预浸纱自动铺放缺陷的分割算法[J]. 航空材料学报, 2017, 37(2): 21-27. |
CAI Z Q, XIAO J, WEN L W, et al. Algorithm of defect segmentation for AFP based on prepregs[J]. Journal of Aeronautical Materials, 2017, 37(2): 21-27 (in Chinese). | |
10 | 吕昊远, 俞璐, 周星宇, 等. 半监督深度学习图像分类方法研究综述[J]. 计算机科学与探索, 2021, 15(6): 1038-1048. |
LV H Y, YU L, ZHOU X Y, et al. Review of semi-supervised deep learning image classification methods[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(6): 1038-1048 (in Chinese). | |
11 | 赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219. |
ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219 (in Chinese). | |
12 | 汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12): 1640-1663. |
TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017, 22(12): 1640-1663 (in Chinese). | |
13 | SHAHAM R T, DEKEL T, MICHAELI T. SinGAN: learning a generative model from a single natural image [C]∥Proceedings of the IEEE International Conference on Computer Vision. 2019: 4570-4580. |
14 | 刘剑超, 相洁, 张玲, 等. 一种自约束的小样本缺损图像分割方法[J]. 小型微型计算机系统, 2022, 43(8): 1732-1738. |
LIU J C, XIANG J, ZHANG L, et al. Level-set rectified U-net for few-shot fouling image segmentation[J]. Journal of Chinese Mini-Micro Computer Systems, 2022, 43(8): 1732-1738 (in Chinese). | |
15 | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. |
WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332 (in Chinese). | |
16 | HINZ T, FISHER M, WANG O, et al. Improved techniques for training single-image GANs[C]∥2021 IEEE Winter Conference on Applications of Computer Vision. 2021: 1299-1308. |
17 | 刘伟韬. 基于SinGAN的图像生成模型[J]. 曲阜师范大学学报(自然科学版), 2020, 46(2): 67-71. |
LIU W T. Image generative model based on single generative adversarial network[J]. Journal of Qufu Normal University (Natural Science Edition), 2020, 46(2): 67-71 (in Chinese). | |
18 | 程国建, 张福临. 基于SinGAN的岩石薄片图像超分辨率重建[J]. 西安石油大学学报(自然科学版), 2021, 36(2): 116-121. |
CHENG G J, ZHANG F L. Super-resolution reconstruction of rock slice image based on SinGAN[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(2): 116-121 (in Chinese). | |
19 | SONGWEI G, RUI Z, HONGXIA L, et al. Improved SinGAN integrated with an attentional mechanism for remote sensing image classification[J]. Remote Sensing, 2021, 13(9): 1713. |
20 | 王星, 高峰, 陈吉, 等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报, 2021, 46(9): 3066-3078. |
WANG X, GAO F, CHEN J, et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society, 2021, 46(9): 3066-3078 (in Chinese). | |
21 | 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. |
YIN H P, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: A review[J]. Acta Automatica Sinica, 2016, 42(10): 1466-1489 (in Chinese). | |
22 | 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312. |
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312 (in Chinese). | |
23 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13708-13717. |
24 | 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6. |
REN H, WANG X G. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6 (in Chinese). | |
25 | 赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究[J]. 图学学报, 2022, 43(5): 776-782. |
ZHAO L L, WANG X Y, ZHANG Y, et al. Vehicle target detection based on YOLOv5s fusion SENet[J]. Journal of Graphics, 2022, 43(5): 776-782 (in Chinese). | |
26 | 陈志军, 胡军楠, 冷姚, 等. 基于轻量化网络和注意力机制的智能车快速目标识别方法[J]. 交通运输系统工程与信息, 2022, 22(6): 105-113. |
CHEN Z J, HU J N, LENG Y, et al. Intelligent vehicle target fast recognition based on lightweight network and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 105-113 (in Chinese). | |
27 | 于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型[J]. 计算机工程, 2023, 49(6): 265-273. |
YU H Y, JING P, ZHANG W T, et al. Improved U-Net model for road crack detection based on residual and attention mechanism[J]. Computer Engineering, 2023, 49(6): 265-273 (in Chinese). | |
28 | 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006(12): 1758-1763. |
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006(12): 1758-1763 (in Chinese). | |
29 | 高瑶, 肖卫国, 王力, 等. 关于红外图像目标检测评价仿真研究[J]. 计算机仿真, 2016, 33(11): 33-36, 52. |
GAO Y, XIAO W G, WANG L, et al. Study on simulation and evaluation of infrared image target detection[J]. Computer Integrated Manufacturing Systems, 2016, 33(11): 33-36, 52 (in Chinese). | |
30 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
31 | BERG A C, FU C Y, SZEGEDY C, et al. SSD: Single Shot MultiBox Detector [DB/OL]. arXiv:. |
32 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]∥Conference on Computer Vision and Pattern Recognition. 2018: 1-6 |
33 | BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection [DB/OL]. arXiv:. |
[1] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[2] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[3] | Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313. |
[4] | Zhiqiang FENG, Zhijun XIE, Zhengwei BAO, Kewei CHEN. Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327106-327106. |
[5] | Guotao MAO, Tianmin DENG, Nanjing YU. Object detection in UAV images based on multi-scale split attention [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326738-326738. |
[6] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[7] | Xiaohang LI, Jianjiang ZHOU. Multi⁃scale modality fusion network based on adaptive memory length [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628977-628977. |
[8] | Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220. |
[9] | Jiehua TIAN, Di SUN, Feng QU, Junqiang BAI. Airfoil parameterization method based on CST⁃GAN [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128280-128280. |
[10] | Yubin YUAN, Yiquan WU, Langyue ZHAO, Jinlin CHEN, Qichang ZHAO. Research progress of UAV aerial video multi⁃object detection and tracking based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28334-028334. |
[11] | Yucun SONG, Quanbo GE, Junlong ZHU, Zhenyu LU. Improved YOLOX object detection algorithm based on gradient difference adaptive learning rate optimization [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327951-327951. |
[12] | Zihao LI, Zhengping WANG, Yuntao HE. Aerial-photography dense small target detection algorithm based on adaptive cooperative attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327944-327944. |
[13] | SUN Xiuyi, HU Shaohai, MA Xiaole. Infrared and visible image fusion based on unsupervised deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726938-726938. |
[14] | ZHANG Shengfei, LI Tianmei, HU Changhua, DU Dangbo, SI Xiaosheng. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 225708-225708. |
[15] | LIU Fang, HAN Xiao. Adaptive aerial object detection based on multi-scale deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325270-325270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341