Acta Aeronautica et Astronautica Sinica
Received:
2024-06-20
Revised:
2024-09-10
Online:
2024-09-20
Published:
2024-09-20
Contact:
Yi-Quan WU
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://hkxb.buaa.edu.cn/EN/10.7527/S1000-6893.2024.30848
参 考 文 献 [1] LEE G, HONG S, CHO D. Self-supervised feature enhancement networks for small object detection in noisy images[J]. IEEE Signal Processing Letters, 2021, 28: 1026-1030.[2] 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5): 273-283.MAO G T, DENG T M, YU N J. Object detection in UAV images based on multi-scale split attention[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 273-283. (in Chinese).[3] 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 1-30.LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 1-30. (in Chinese).[4] ZHANG X, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]. IEEE International Conference on Computer Vision Workshops, Seoul, South Korea, 2019: 118-126.[5] 李子豪, 王正平, 贺云涛. 基于自适应协同注意力机制的航拍密集小目标检测算法[J]. 航空学报, 2023, 44(13): 244-254.LI Z H, WANG Z P, HE Y T. Aerial-photography dense small target detection algorithm based on adaptive cooperative attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 244-254. (in Chinese).[6] 宋玉存, 葛泉波, 朱军龙, 等. 基于梯度差自适应学习率优化的改进YOLOX目标检测算法[J]. 航空学报, 2023, 44(14): 215-231.SONG Y C, GE Q B, ZHU J L, et al. Improved YOLOX object detection algorithm based on gradient difference adaptive learning rate optimization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 215-231. (in Chinese).[7] 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590-601.LIU Y, LIU H Y, FAN J L, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590-601. (in Chinese).[8] TONG K, WU Y, ZHOU F. Recent advances in small object detection based on deep learning: a review [J]. Image and Vision Computing, 2020, 97.[9] 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3): 391-417.GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J], Journal of Data Acquisition and Processing, 2021, 36(3): 391-417. (in Chinese).[10] 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 107-125.LI H G, YU R N, DING W R. Research development of small object detection based on deep learning[J] Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 107-125. (in Chinese).[11] CHENG G, YUAN X, YAO X, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.[12] 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报, 2023, 28(9): 2587-2615.PAN X Y, JIA N X, MU Y Z, et al. Survey of small object detection[J]. Journal of Image and Graphics, 2023, 28(9): 2587-2615. (in Chinese).[13] TONG K, WU Y. Deep learning-based detection from the perspective of small or tiny objects: a survey[J]. Image and Vision Computing, 2022, 123.[14] 童康, 吴一全. 基于深度学习的小目标检测基准研究进展[J]. 电子学报, 2024, 52(3): 1016-1040.TONG K, WU Y Q. Research advances on deep learning based small object detection benchmarks[J]. Acta Electronica Sinica, 2024, 52(3): 1016-1040. (in Chinese).[15] 袁翔, 程塨, 李戈, 等. 遥感影像小目标检测研究进展[J]. 中国图象图形学报, 2023, 28(6): 1662-1684.YUAN X, CHENG G, Li G, et al. Progress in small object detection for remote sensing images[J]. Journal of Image and Graphics, 2023, 28(6): 1662-1684. (in Chinese).[16] 王辉, 贾自凯, 金忍, 等. 无人机视觉引导对接过程中的协同目标检测[J]. 航空学报, 2022, 43(1): 488-502.WANG H, JIA Z K, JIN R, et al. Cooperative object detection in UAV-based vision-guided docking[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 488-502. (in Chinese).[17] 梁栋, 高赛, 孙涵, 等. 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报, 2020, 41(9): 159-171.LIANG D, GAO S, SUN H, et al. UAV detection in motion cameras combining kernelized correlation filters and deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 159-171. (in Chinese).[18] MITTAL P, SINGH R, SHARMA A. Deep learning-based object detection in low-altitude UAV datasets: a survey[J]. Image and Vision Computing, 2020, 104.[19] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 137-151.JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 137-151. (in Chinese).[20] WU X, LI W, HONG D, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey[J]. IEEE Geoscience and Remote sensing Magazine, 2022, 10(1): 91-124.[21] OSCO L P, JUNIOR J M, RAMOS A P M, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102.[22] 冷佳旭, 莫梦竟成, 周应华, 等. 无人机视角下的目标检测研究进展[J]. 中国图象图形学报, 2023, 28(9): 2563-2586.LENG J X, MO M J C, ZHOU Y H, et al. Recent advances in drone-view object detection[J]. Journal of Image and Graphics, 2023, 28(9): 2563-2586. (in Chinese).[23] 刘芳, 韩笑. 基于多尺度深度学习的自适应航拍目标检测[J]. 航空学报, 2022, 43(5): 471-482.LIU F, HAN X. Adaptive aerial object detection based on multi-scale deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 471-482. (in Chinese).[24] ZHU Z, LIANG D, ZHANG S-H, et al. Traffic-sign detection and classification in the wild[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 2110-2118.[25] TUGGENER L, ELEZI I, SCHMIDHUBER J, et al. DeepScores-a dataset for segmentation, detection and classification of tiny objects[C]. International Conference on Pattern Recognition, Beijing, China, 2018: 3704-3709.[26] LIU Y, YANG F, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access, 2020, 8: 145740-145750.[27] 吕晓君, 向伟, 刘云鹏. 基于强化底层特征的无人机航拍图像小目标检测算法[J]. 计算机应用研究, 2021, 38(5): 1567-1571.LVU X J, XIANG W, LIU Y P. Small object detection algorithm on UAV aerial images based on enhanced lower feature[J]. Application Research of Computers, 2021, 38(5): 1567-1571. (in Chinese).[28] 王殿伟, 胡里晨, 房杰, 等. 基于改进Double-Head RCNN 的无人机航拍图像小目标检测算法[J/OL]. 北京航空航天大学学报, (2023-01-10) [2024-05-25]. https://doi.org/10.13700/j.bh.1001-5965.2022.0591.WANG D W, HU L C, FANG J, et al. Small object detection algorithm based on improved Double-Head RCNN for UAV aerial images[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-01-10) [2024-05-25]. https://doi.org/10.13700/j.bh.1001-5965. 2022.0591.[29] LIANG X, ZHANG J, ZHUO L, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6): 1758-1770.[30] ZHENG Q, CHEN Y. Feature pyramid of bi-directional stepped concatenation for small object detection[J]. Multimedia Tools and Applications, 2021, 80(13): 20283-20305.[31] SHAMSOLMOALI P, ZAREAPOOR M, YANG J, et al. Enhanced single-shot detector for small object detection in remote sensing images[C]. IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1716-1719.[32] LIU M, WANG X, ZHOU A, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8): 2238.[33] 王鼎山, 贾世杰. 基于目标感知增强的无人机航拍目标检测[J]. 计算机工程与设计, 2022, 43(7): 2071-2077.WANG D S, JIA S J. Object-aware enhancement based UAV aerial object detection[J]. Computer Engineering and Design, 2022, 43(7): 2071-2077. (in Chinese).[34] 李杨, 武连全, 杨海涛, 等. 一种无人机视角下的小目标检测算法[J]. 红外技术, 2023, 45(5): 468-474.LI Y, WU L Q, YANG M T, et al. A small target detection algorithm from UAV perspective[J]. Infrared Technology, 2023, 45(5): 468-474. (in Chinese).[35] 张河山, 范梦伟, 谭鑫, 等. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J/OL]. 吉林大学学报(工学版), (2023-12-28) [2024-05-25]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230779.ZHANG H S, FAN M W, TAN X, et al. Dense small object vehicle detection in UAV aerial images using improved YOLOX[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2023-12-28) [2024-05-25]. https://doi.org/10.13229/j.cnki.jdxbgxb. 20230779.[36] 马俊燕, 常亚楠. MFE-YOLOX: 无人机航拍下密集小目标检测算法[J]. 重庆邮电大学学报(自然科学版), 2024, 36(1): 128-135.MA J Y, CHANG Y L. MFE-YOLOX: dense small target detection algorithm under UAV aerial[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2024, 36(1): 128-135. (in Chinese).[37] 潘翔, 陈前斌, 黄昂, 等. 基于改进YOLOX的无人机航拍图像小目标检测算法[J]. 南京邮电大学学报(自然科学版), 2024, 44(1): 90-100.PAN X, CHEN Q B, HUANG A, et al. A small target detection algorithm of UAV aerial photography images based on improved YOLOX[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2024, 44(1): 90-100. (in Chinese).[38] 邱昊, 钟小勇, 黄林辉, 等. 面向航拍小目标的改进YOLOv5n检测算法[J]. 电光与控制, 2023, 30(10): 95-101.QIU H, ZHONG X Y, HUANG L H, et al. Improved YOLOv5n detection algorithm for aerial photography of small targets[J]. Electronics Optics & Control, 2023, 30(10): 95-101. (in Chinese).[39] 韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.HAN J, YUAN X P, WANG Z, et al. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University(Engineering Science), 2023, 57(6): 1224-1233. (in Chinese).[40] 刘涛, 高一萌, 柴蕊, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 110-121.LIU T, GAO Y M, CHAI R, et al. Improved YOLOv5s UAV view small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 110-121. (in Chinese).[41] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199. (in Chinese).[42] 陈蕊, 郑华飞, 蒋鸿宇, 等. 结合仿真迁移学习和自适应融合的无人机小目标检测[J]. 小型微型计算机系统, 2023, 44(8): 1743-1749.CHEN R, ZHENG H F, JIANG H Y, et al. Combination of simulation-based transfer learning and adaptive fusion for UAV small object detection[J]. Journal of Chinese Computer Systems, 2023, 44(8): 1743-1749. (in Chinese).[43] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206.XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206. (in Chinese).[44] 杨慧剑, 孟亮. 基于改进的YOLOv5的航拍图像中小目标检测算法[J]. 计算机工程与科学, 2023, 45(6): 1063-1070.YANG H J, MENG L. A small target detection algorithm based on improved YOLOv5 in aerial image[J]. Computer Engineering & Science, 2023, 45(6): 1063-1070. (in Chinese).[45] LIU Z, GAO X, WAN Y, et al. An improved YOLOv5 method for small object detection in UAV capture scenes[J]. IEEE Access, 2023, 11: 14365-14374.[46] 李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.LI L X, WANG X, WANG J, et al. Small target detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666. (in Chinese).[47] WANG M, YANG W, WANG L, et al. FE-YOLOv5: feature enhancement network based on YOLOv5 for small object detection[J]. Journal of Visual Communication and Image Representation, 2023, 90.[48] 何宇豪, 易明发, 周先存, 等. 基于改进的YOLOv5的无人机图像小目标检测[J/OL]. 智能系统学报, (2023-12-04)[2024-05-25].http://kns.cnki.net/kcms/ detail/23.1538.TP.20231204.1028.002.html.HE Y H, YI M F, ZHOU X C, et al. Small target detection in UAV image based on improved YOLOv5[J/OL]. CAAI Transactions on Intelligent Systems, (2023-12-04) [2024-05-25].http://kns.cnki.net/ kcms/detail/23.1538.TP.20231204.1028.002.html.[49] SONG G, DU H, ZHANG X, et al. Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention[J]. Engineering Applications of Artificial Intelligence, 2024, 128.[50] 陈佳慧, 王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 100-108.CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(3): 100-108. (in Chinese).[51] 王晓红, 胡豫. 复杂背景下的无人机图像小目标检测[J]. 计算机工程与应用, 2023, 59(15): 107-114.WANG X H, HU Y. UAV image small object detection on a complex background[J]. Computer Engineering and Applications, 2023, 59(15): 107-114. (in Chinese).[52] 张光华, 李聪发, 李钢硬, 等. 基于改进YOLOv7-tiny的无人机航拍图像小目标检测算法[J/OL]. 工程科学与技术, (2023-12-12) [2024-05-25]. https://doi.org/10.15961/j.jsuese.202300593.ZHANG G H, LI C F, LI G Y, et al. Small target detection algorithm for UAV aerial images based on improved YOLOv7-tiny[J/OL]. Advanced Engineering Sciences, (2023-12-12) [2024-05-25]. https://doi.org/ 10.15961/j.jsuese.202300593.[53] 牛为华, 魏雅丽. 基于改进YOLOv7的航拍小目标检测算法[J]. 电光与控制, 2024, 31(1): 117-122.NIU W H, WEI Y L. Small target detection in aerial photography images based on improved YOLOv7 algorithm[J]. Electronics Optics & Control, 2024, 31(1): 117-122. (in Chinese).[54] 邓天民, 程鑫鑫, 刘金凤, 等. 基于特征复用机制的航拍图像小目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 1-12.DENG T M, CHENG X X, LIU J F, et al. Small target detection algorithm for aerial images based on feature reuse mechanism[J]. Journal of Zhejiang University(Engineering Science), 2024, 58(3): 1-12. (in Chinese).[55] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109. (in Chinese).[56] HE Z, HUANG L, ZENG W, et al. Elongated small object detection from remote sensing images using hierarchical scale-sensitive networks[J]. Remote Sensing, 2021, 13(16): 3182.[57] 王胜科, 任鹏飞, 吕昕, 等. 基于中心点和双重注意力机制的无人机高分辨率图像小目标检测算法[J]. 应用科学学报, 2021, 39(4): 650-659.WANG S K, REN P F, LVU X, et al. Small target detection algorithm of UAV high resolution image based on center point and dual attention mechanism[J]. Journal of Applied Sciences, 2021, 39(4): 650-659. (in Chinese).[58] 刘鑫, 黄进, 杨涛, 等. 改进CenterNet的无人机小目标捕获检测方法[J]. 计算机工程与应用, 2022, 58(14): 96-104.LIU X, HUANG J, YANG T, et al. Improved small object detection for UAV acquisition based on CenterNet[J]. Computer Engineering and Applications, 2022, 58(14): 96-104. (in Chinese).[59] SHI T, GONG J, HU J, et al. Feature-enhanced centernet for small object detection in remote sensing images[J]. Remote Sensing, 2022, 14(21): 5488.[60] 刘树东, 刘业辉, 孙叶美, 等. 基于倒置残差注意力的无人机航拍图像小目标检测[J]. 北京航空航天大学学报, 2023, 49(3): 514-524.LIU S D, LIU Y H, SUN Y M, et al. Small object detection in UAV aerial images based on inverted residual attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 514-524. (in Chinese).[61] JIAO L, KANG C, DONG S, et al. An attention-based feature pyramid network for single-stage small object detection[J]. Multimedia Tools and Applications, 2023, 82(12): 18529-18544.[62] DOLORIEL C T C, CAJOTE R D. Improving the detection of small oriented objects in aerial images[C]. IEEE Winter Conference on Applications of Computer Vision Workshops, Waikola, HI, USA, 2023: 176-185.[63] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(6): 1-12.YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 1-12. (in Chinese).[64] QIN H, WU Y, DONG F, et al. Dense sampling and detail enhancement network: Improved small object detection based on dense sampling and detail enhancement[J]. IET Computer Vision, 2022, 16(4): 307-316.[65] YE T, QIN W, LI Y, et al. Dense and small object detection in UAV-vision based on a global-local feature enhanced network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13.[66] 张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报, 2023, 51(4): 944-955.ZHANG Z, YI H H, ZHENG J. Focusing on small objects detector in aerial images[J]. Acta Electronica Sinica, 2023, 51(4): 944-955. (in Chinese).[67] 王林, 刘景亮, 王无为. 基于空洞卷积融合Transformer的无人机图像小目标检测方法[J/OL]. 计算机应用, (2024-01-18) [2024-05-25]. http://kns.cnki.net/kcms/detail/51.1307.TP.20240116.2230.002.html.WANG L, LIU J L, WANG W W. Small target detection method in UAV images based on dilated convolution fusion Transformer[J/OL]. Journal of Computer Applications, (2024-01-18) [2024-05-25]. http://kns.cnki.net/kcms/detail/51.1307.TP.20240116.2230.002.html.[68] 彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法[J]. 计算机工程与应用, 2024, 60(5): 183-190.PENG Y F, ZHAO T, CHEN Y K, et al. UAV small object detection algorithm based on context information and feature refinement[J]. Computer Engineering and Applications, 2024, 60(5): 183-190. (in Chinese).[69] COURTRAI L, PHAM M-T, LEFèVRE S. Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks[J]. Remote Sensing, 2020, 12(19): 3152.[70] RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing, 2020, 12(9): 1432.[71] COURTRAI L, PHAM M-T, FRIGUET C, et al. Small object detection from remote sensing images with the help of object-focused super-resolution using wasserstein GANs[C]. IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 2020: 260-263.[72] MU J, LI S, LIU Z, et al. Integration of gradient guidance and edge enhancement into super-resolution for small object detection in aerial images[J]. IET Image Processing, 2021, 15(13): 3037-3052.[73] BASHIR S M A, WANG Y. Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network[J]. Remote Sensing, 2021, 13(9): 1854.[74] WU J, XU S. From point to region: accurate and efficient hierarchical small object detection in low-resolution remote sensing images[J]. Remote Sensing, 2021, 13(13): 2620.[75] FANG X, FAN H, YANG M, et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters, 2022, 153: 107-112.[76] BOSQUET B, CORES D, SEIDENARI L, et al. A full data augmentation pipeline for small object detection based on generative adversarial networks[J]. Pattern Recognition, 2023, 133.[77] 张伟, 庄幸涛, 王雪力, 等. DS-YOLO:一种部署在无人机终端上的小目标实时检测算法[J]. 南京邮电大学学报(自然科学版), 2021, 41(1): 86-98.ZHANG W, ZHUANG X T, WANG X L, et al. DS-YOLO: a real-time small object detection algorithm on UAVs[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2021, 41(1): 86-98. (in Chinese).[78] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463.[79] HAN W, KUERBAN A, YANG Y, et al. Multi-vision network for accurate and real-time small object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.[80] AMUDHAN A N, P. S A. Lightweight and computationally faster hypermetropic convolutional neural network for small size object detection[J]. Image and Vision Computing, 2022, 119.[81] 丛玉华, 何啸, 邢长达, 等. 基于无人机的轻量化小目标检测网络[J]. 弹箭与制导学报, 2022, 42(6): 6-12.CONG Y H, HE X, XING C D, et al. Lightweight small target detection network based on UAV[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(6): 6-12. (in Chinese).[82] ZHAN W, SUN C, WANG M, et al. An improved yolov5 real-time detection method for small objects captured by UAV[J]. Soft Computing, 2022, 26(1): 361-373.[83] 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 251-265.FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 251-265. (in Chinese).[84] 刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报, 2024, 45(14): 1-21.LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 1-21. (in Chinese).[85] AKYON F C, ALTINUC S O, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]. IEEE International Conference on Image Processing, Bordeaux, France, 2022: 966-970.[86] ZHANG H, HAO C, SONG W, et al. Adaptive slicing-aided hyper inference for small object detection in high-resolution remote sensing images[J]. Remote Sensing, 2023, 15(5): 1249.[87] XU C, WANG J, YANG W, et al. Detecting tiny objects in aerial images: a normalized wasserstein distance and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 79-93.[88] XIONG Z, SONG T, HE S, et al. A unified and costless approach for improving small and long-tail object detection in aerial images of traffic scenarios[J]. Applied Intelligence, 2023, 53(11): 14426-14447.[89] LI Y, HUANG Q, PEI X, et al. Cross-layer attention network for small object detection in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2148-2161.[90] LIANG B, SU J, FENG K, et al. Cross-layer triple-branch parallel fusion network for small object detection in UAV images[J]. IEEE Access, 2023, 11: 39738-39750.[91] HUANG S, LIU Q. Addressing scale imbalance for small object detection with dense detector[J]. Neurocomputing, 2022, 473: 68-78.[92] KOYUN O C, KESER R K, AKKAYA I B, et al. Focus-and-detect: a small object detection framework for aerial images[J]. Signal Processing: Image Communication, 2022, 104.[93] TIAN G, LIU J, ZHAO H, et al. Small object detection via dual inspection mechanism for UAV visual images[J]. Applied Intelligence, 2022, 52(4): 4244-4257.[94] ZHU P, WEN L, DU D, et al. VisDrone-DET2018: the vision meets drone object detection in image challenge results[C]. European Conference on Computer Vision Workshops, Munich, Germany, 2018: 437-468.[95] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399.[96] DU D, ZHANG Y, WANG Z, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]. IEEE International Conference on Computer Vision Workshops, Seoul, South Korea, 2019: 213-226.[97] DU D, WEN L, ZHU P, et al. VisDrone-DET2020: the vision meets drone object detection in image challenge results[C]. European Conference on Computer Vision Workshops, Glasgow, UK, 2020: 692-712.[98] CAO Y, HE Z, WANG L, et al. VisDrone-DET2021: The vision meets drone object detection challenge results[C]. IEEE International Conference on Computer Vision Workshops, Montreal, BC, Canada 2021: 2847-2854.[99] HSIEH M-R, LIN Y-L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4165-4173.[100] DU D, QI Y, YU H, et al. The unmanned aerial vehicle benchmark: object detection and tracking[C]. European Conference on Computer Vision, Munich, Germany, 2018: 375-391.[101] BOZCAN I, KAYACAN E. AU-AIR: a multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]. IEEE International Conference on Robotics and Automation, Paris, France, 2020: 8504-8510.[102] BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: a dataset for detection and tracking in aerial thermal infrared videos[C]. IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 2020: 1736-1745.[103] ZHANG W, LIU C, CHANG F, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing, 2020, 12(11): 1760.[104] ZHANG H, SUN M, LI Q, et al. An empirical study of multi-scale object detection in high resolution UAV images[J]. Neurocomputing, 2021, 421: 173-182.[105] KIEFER B, MESSMER M, ZELL A. Diminishing domain bias by leveraging domain labels in object detection on UAVs[C]. 20th International Conference on Advanced Robotics, Ljubljana, Slovenia, 2021: 523-530.[106] DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]. IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2021: 949-958.[107] XU X, ZHANG X, YU B, et al. DAC-SDC low power object detection challenge for UAV applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 392-403.[108] SUN Y, CAO B, ZHU P, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713.[109] VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: a maritime benchmark for detecting humans in open water[C]. IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2022: 3686-3696.[110] SHIN G, YOOUN H, SHIN D, et al. Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques[J]. Soft Computing, 2018, 22(20): 6835-6844.[111] 王强, 吴乐天, 王勇, 等. 基于关键点检测的红外弱小目标检测[J]. 航空学报, 2023, 44(10): 289-299.WANG Q, WU L T, WANG Y, et al. An infrared small target detection method based on key point[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 289-299. (in Chinese).[112] 张立国, 蒋轶轩, 田广军. 基于多尺度融合方法的无人机对地车辆目标检测算法研究[J]. 计量学报, 2021, 42(11): 1436-1442.ZHANG L G, JIANG Y X, TIAN G J. Research on unmanned aerial vehicle to ground vehicle target detection algorithm based on multiscale fusion method[J]. Acta Metrologica Ainica, 2021, 42(11): 1436-1442. (in Chinese).[113] MHALLA A, CHATEAU T, GAZZAH S, et al. An embedded computer-vision system for multi-object detection in traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4006-4018.[114] 张河山, 谭鑫, 范梦伟, 等. 无人机高空航拍视角下小尺度车辆精确检测方法[J/OL].交通运输系统工程与信息, (2024-04-04) [2024-06-05]. http://kns.cnki.net/ kcms/detail/11.4520.U.20240403.1121.004.html.ZHANG H S, TAN X, FAN M W, et al. Accurate detection method of small-scale vehicles from perspective of unmanned aerial vehicle high-altitude aerial photography[J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2024-04-04) [2024-06-05]. http://kns.cnki.net/kcms/ detail/11.4520.U.20240403.1121.004.html.[115] ZHU J, SUN K, JIA S, et al. Urban traffic density estimation based on ultrahigh-resolution UAV video and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 4968-4981.[116] WANG J, CHEN Y, DONG Z, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853-7865.[117] WANG S-Y, QU Z, LI C-J, et al. BANet: small and multi-object detection with a bidirectional attention network for traffic scenes[J]. Engineering Applications of Artificial Intelligence, 2023, 117.[118] 贺拴海, 王安华, 朱钊, 等. 公路桥梁智能检测技术研究进展[J]. 中国公路学报, 2021, 34(12): 12-24.HE S H, WANG A H, ZHU Z, et al. Research progress on intelligent detection technologies of highway bridges[J]. China Journal of Highway and Transport, 2021, 34(12): 12-24. (in Chinese).[119] PENG L, ZHANG J, LI Y, et al. A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2[J]. Engineering Applications of Artificial Intelligence, 2024, 133.[120] XU Z, LIU Y, GAN L, et al. RNGDet: road network graph detection by transformer in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60.[121] ZHENG C, PENG B, CHEN B, et al. Multiscale fusion network for rural newly constructed building detection in unmanned aerial vehicle imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9160-9173.[122] 刘传洋, 吴一全, 刘景景. 无人机航拍图像中电力线检测方法研究进展[J]. 中国图象图形学报, 2023, 28(10): 3025-3048.LIU C Y, WU Y Q, LIU J J. The growth of UAV aerial images-related power lines detection[J], Journal of Image and Graphics, 2023, 28(10): 3025-3048. (in Chinese).[123] SHARMA P, SAURAV S, SINGH S. Object detection in power line infrastructure: a review of the challenges and solutions[J]. Engineering Applications of Artificial Intelligence, 2024, 130.[124] 刘传洋, 吴一全, 刘景景. 基于视觉的输电线路金具锈蚀缺陷检测方法研究进展[J/OL].仪器仪表学报, (2024-02-05) [2024-06-05]. http://kns.cnki.net/kcms/ detail/11.2179.TH.20240204.1557.045.html.LIU C Y, WU Y Q, LIU J J. Research progress of vision-based rust defect detection methods for metal fittings in transmission lines[J/OL]. Chinese Journal of Scientific Instrument, (2024-02-05) [2024-06-05]. http://kns.cnki.net/kcms/detail/11.2179.TH.20240204.1557.045.html.[125] 罗潇, 於锋, 彭勇. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制, 2022, 50(10): 132-139.LUO X, YU F, PENG Y. UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control, 2022, 50(10): 132-139. (in Chinese).[126] 宋立业, 刘帅, 王凯, 等. 基于改进 EfficientDet 的电网元件及缺陷识别方法[J]. 电工技术学报, 2022, 37(9): 2241-2251.SONG L Y, LIU S, WANG K, et al. Identification method of power grid components and defects based on improved efficientdet[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2241-2251. (in Chinese)[127] ZHAO L, ZHI L, ZHAO C, et al. Fire-YOLO: a small target object detection method for fire inspection[J]. Sustainability, 2022, 14.[128] LIU W, REN G, YU R, et al. Image-adaptive yolo for object detection in adverse weather conditions[C]. AAAI Conference on Artificial Intelligence, Virtual, 2022: 1792-1800.[129] YANMAZ E. Joint or decoupled optimization: multi-uav path planning for search and rescue[J]. Ad Hoc Networks, 2023, 138.[130] PAULIN G, SAMBOLEK S, IVASIC-KOS M. Application of raycast method for person geolocalization and distance determination using UAV images in real-world land search and rescue scenarios[J]. Expert Systems with Applications, 2024, 237.[131] DOMOZI Z, STOJCSICS D, BENHAMIDA A, et al. Real time object detection for aerial search and rescue missions for missing persons[C]. IEEE International Conference of System of Systems Engineering, Budapest, Hungary, 2020: 519-524.[132] BOZIC-STULIC D, MARUSIC Z, GOTOVAC S. Deep learning approach in aerial imagery for supporting land search and rescue missions[J]. International Journal of Computer Vision, 2019, 127(9): 1256-1278.[133] XU J, FAN X, JIAN H, et al. Yoloow: a spatial scale adaptive real-time object detection neural network for open water search and rescue from UAV aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62.[134] CHEN Y, LEE W S, GAN H, et al. Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages[J]. Remote Sensing, 2019, 11(13): 1584.[135] WITTSTRUCK L, KüHLING I, TRAUTZ D, et al. UAV-based RGB imagery for hokkaido pumpkin (cucurbita max.) detection and yield estimation[J]. Sensors, 2021, 21(1): 118.[136] PANG Y, SHI Y, GAO S, et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery[J]. Computers and Electronics in Agriculture, 2020, 178.[137] OSCO L P, ARRUDA M D S D, GON?ALVES D N, et al. A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174: 1-17.[138] MARTIN C, ZHANG Q, ZHAI D, et al. Enabling a large-scale assessment of litter along saudi arabian red sea shores by combining drones and machine learning[J]. Environmental Pollution, 2021, 277.[139] XUE B, HUANG B, WEI W, et al. An efficient deep-sea debris detection method using deep neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12348-12360.[140] JIA T, KAPELAN Z, VRIES R D, et al. Deep learning for detecting macroplastic litter in water bodies: a review[J]. Water Research, 2023, 231.[141] 苏航, 徐从安, 姚力波, 等. 一种轻量化SAR图像舰船目标斜框检测方法[J]. 航空学报, 2022, 43(S1): 157-164.SU H, XU C A, YAO L B, et al. A lightweight oriented ship detection method in SAR images[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 157-164. (in Chinese).[142] 肖欣林, 施伟超, 郑向涛, 等. 基于多模型协同的船舰目标检测[J]. 航空学报, 2024, 45(14): 1-12.XIAO X L, SHI W C, ZHENG X T, et al. Multiple models collaboration for ship target detection[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 1-12. (in Chinese).[143] ER M J, ZHANG Y, CHEN J, et al. Ship detection with deep learning: a survey[J]. Artificial Intelligence Review, 2023, 56: 11825-11865.[144] DELPLANQUE A, FOUCHER S, LEJEUNE P, et al. Multispecies detection and identification of african mammals in aerial imagery using convolutional neural networks[J]. Remote Sensing in Ecology and Conservation, 2022, 8(2): 166-179.[145] KELLENBERGER B, MARCOS D, TUIA D. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning[J]. Remote Sensing of Environment, 2018, 216. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
[3] | Wei ZHANG, Ruojun HE. Autonomous trajectory design for IoT data collection by UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329054-329054-1. |
[4] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[5] | Boqing YAO, Jiayu CHEN, Changchao GU, Qinhua LU, Xuhang WANG, Hongjuan GE. A dynamic evaluation method for mission safety of missile equipment based on hierarchical safety control structure [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 228858-228858. |
[6] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[7] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[8] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[9] | Jiang ZHAO, Xuan ZHANG, Pei CHI, Yingxun WANG. Self⁃adaptive formation control and dynamic path planning for air⁃ground heterogeneous swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 329809-329809. |
[10] | Wu PAN, Xiang WANG, Na LYU, Zhiyuan REN, Wenya LIU. Multi-UAV relay connectivity optimization with constraint of hover time [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 329854-329854. |
[11] | Honghong ZHANG, Wenhua LI, Jiayi ZHENG, Hongbin LIU, Peng ZHANG, Peng GAO, Xusheng GAN. Manned/unmanned aerial vehicle cooperative combat system: Concepts, technologies, and challenges [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 29653-029653. |
[12] | Zhaochen CHU, Tao SONG, Ren JIN, Defu LIN. Vision-based air-to-air multi-UAVs tracking [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629379-629379. |
[13] | Junyu LI, Qiankun LIU, Ying FU. Infrared small object detection based on attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 628959-628959. |
[14] | Binbin WEI, Yongwei GAO, Bo SUN, Yalong ZHANG, Shuling HU, Lishu HAO. Development mode of initial disturbance in multibody separation: Theoretical analysis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 129214-129214. |
[15] | Qingrui ZHANG, Yunyun LIU, Huijie SUN, Bo ZHU. Robust cooperative tracking control for close formation of fixed⁃wing unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 629233-629233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341