1 |
PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11): 1-8.
|
2 |
STORER L N, WILLIAMS P D, JOSHI M M. Global response of clear‐air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9976-9984.
|
3 |
SOLANKI R, GUO J P, LV Y M, et al. Elucidating the atmospheric boundary layer turbulence by combining UHF radar wind profiler and radiosonde measurements over urban area of Beijing[J]. Urban Climate, 2022, 43: 101151.
|
4 |
LV Y M, GUO J P, LI J, et al. Spatiotemporal characteristics of atmospheric turbulence over China estimated using operational high-resolution soundings[J]. Environmental Research Letters, 2021, 16(5): 05405.
|
5 |
WU Y Z, GUO J P, CHEN T M, et al. Forecasting precipitation from radar wind profiler mesonet and reanalysis using the random forest algorithm[J]. Remote Sensing, 2023, 15(6): 1635.
|
6 |
YANG R F, GUO J P, DENG W L, et al. Investigation of turbulent dissipation rate profiles from two radar wind profilers at plateau and plain stations in the North China Plain[J]. Remote Sensing, 2023, 15(16): 4103.
|
7 |
WILDMANN N, PÄSCHKE E, ROIGER A, et al. Towards improved turbulence estimation with Doppler wind lidar Velocity-Azimuth Display(VAD) scans[J].Atmospheric Measurement Techniques, 2020, 13(8): 4141-4158.
|
8 |
VAN DYK R N, PARISEAU D H, DODSON R E, et al. Systems integration of unmanned aircraft into the national airspace: Part of the Federal Aviation Administration next generation air transportation system[C]∥ 2012 IEEE Systems and Information Engineering Design Symposium. Piscataway: IEEE Press, 2012: 156-161.
|
9 |
方向,林雯,陶韬. 南京信息工程大学智能遥感工程研究院夏海云:争气,为祖国做最好的激光雷达![N]. 江苏科技报,2022-05-27(A08).
|
|
FANG X, LIN W, TAO T. Xia Haiyun, Institute of intelligent remote sensing engineering, Nanjing university of information science and technology: Make the best lidar for the motherland! [N]. Jiangsu Science and Technology News,2022-05-27(A08) .(in Chinese)
|
10 |
董骁, 胡以华, 徐世龙, 等. 不同气溶胶环境中相干激光雷达回波特性[J]. 光学学报, 2018, 38(1): 0101001.
|
|
DONG X, HU Y H, XU S L, et al. Echoing characteristics of coherent lidar in different aerosol environments[J]. Acta Optica Sinica, 2018, 38(1): 0101001 (in Chinese).
|
11 |
方巍, 庞林, 张飞鸿, 等. 对抗型长短期记忆网络的雷达回波外推算法[J]. 中国图象图形学报, 2021, 26(5): 1067-1080.
|
|
FANG W, PANG L, ZHANG F H, et al. Radar echo extrapolation algorithm based on adversarial long short-term memory network[J]. Journal of Image and Graphics, 2021, 26(5): 1067-1080 (in Chinese).
|
12 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
13 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1-9.
|
14 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
15 |
王佳宇. 基于深度学习的变电设备铭牌文本识别研究[D]. 南京: 东南大学, 2020.
|
|
WANG J Y. Research on text recognition of substation equipment nameplate based on deep learning[D].Nanjing: Southeast University, 2020 (in Chinese).
|
16 |
CHUQUICUSMA M J M, HUSSEIN S, BURT J, et al. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis[C]∥ 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway: IEEE Press, 2018: 240-244.
|
17 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]∥ Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2014: 2672–2680.
|
18 |
田洁华, 孙迪, 屈峰, 等. 基于CST-GAN的翼型参数化方法[J]. 航空学报, 2023, 44(18): 128280.
|
|
TIAN J H, SUN D, QU F, et al. Airfoil parameterization method based on CST-GAN[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128280 (in Chinese).
|
19 |
HUANG R, DUAN B K, ZHANG Y X, et al. Prior-guided GAN-based interactive airplane engine damage image augmentation method[J]. Chinese Journal of Aeronautics, 2022, 35(10): 222-232.
|
20 |
ZHOU H J, BAI J, WANG Y R, et al. Few-shot electromagnetic signal classification: A data union augmentation method[J]. Chinese Journal of Aeronautics, 2022, 35(9): 49-57.
|
21 |
WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field prediction with sparse data[J]. Chinese Journal of Aeronautics, 2022, 35(1): 470-484.
|
22 |
WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74.
|
23 |
孙磊, 杨宇, 毛秀青, 等. 基于空间特征的生成对抗网络数据生成方法[J]. 电子与信息学报, 2023, 45(6): 1959-1969.
|
|
SUN L, YANG Y, MAO X Q, et al. Data generation based on generative adversarial network with spatial features[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1959-1969 (in Chinese).
|
24 |
CAI J X, ZHANG Y, DOVIAK R J, et al. Diagnosis and classification of typhoon-associated low-altitude turbulence using HKO-TDWR radar observations and machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3633-3648.
|
25 |
OLIVEIRA M M, BIDINOTTO J H. flight turbulence level classificator using a multilayer perceptron network trained with flight test data[J]. IEEE Latin America Transactions, 2020, 18(5): 954-961.
|
26 |
MUÑOZ-ESPARZA D, SHARMAN R D, DEIERLING W. Aviation turbulence forecasting at upper levels with machine learning techniques based on regression trees[J]. Journal of Applied Meteorology and Climatology, 2020, 59(11): 1883-1899.
|
27 |
叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736.
|
|
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736 (in Chinese).
|
28 |
魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3): 423876.
|
|
WEI X L, CHAO Q, TAO J F, et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423876 (in Chinese).
|
29 |
韩淞宇, 邵海东, 姜洪开, 等. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J]. 航空学报, 2022, 43(9): 625479.
|
|
HAN S Y, SHAO H D, JIANG H K, et al. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625479 (in Chinese).
|
30 |
李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691.
|
|
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese).
|
31 |
ZHAO G, HU J Y, XIAO W L, et al. A mask R-CNN based method for inspecting cable brackets in aircraft[J]. Chinese Journal of Aeronautics, 2021, 34(12): 214-226.
|
32 |
LI Y B, DU X Q, WAN F Y, et al. Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging[J]. Chinese Journal of Aeronautics, 2020, 33(2): 427-438.
|
33 |
ZHOU D, XIAO Z, ZUO H. A hybrid deep neural network based on multi-time window convolutional bidirectional LSTM for civil aircraft APU hazard identification[J]. Chinese Journal of Aeronautics,2022,35(4):344-361.
|
34 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. arXiv preprint:1511.06434,2015.
|
35 |
卫奥尼, 秦成兵, 董帅, 等. 超分辨荧光显微成像的若干研究进展[J]. 激光与光电子学进展, 2023, 60(11): 1106012.
|
|
WEI A N, QIN C B, DONG S, et al. Research progress of super-resolution fluorescence microscopy[J]. Laser & Optoelectronics Progress, 2023, 60(11):1106012. (in Chinese).
|
36 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J].Journal of Machine Learning Research, 2011,15: 315-323.
|
37 |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]∥ Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. New York: ACM, 2015: 448-456.
|
38 |
MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]∥ International Conference on Machine Learning (ICML),2013.
|
39 |
DAVIES F, COLLIER C G, PEARSON G N, et al. Doppler lidar measurements of turbulent structure function over an urban area[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(5): 753-761.
|
40 |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6629-6640.
|