[1] CROFT K, LESSARD L, PASINI D, et al.Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates[J].Composites Part A:Applied Science and Manufacturing, 2011, 42(5):484-491. [2] HARIK R, SAIDY C, WILLIAMS S J, et al.Automated fiber placement defect identity cards:Cause, anticipation, existence, significance, and progression[C]//SAMPE 18.Covina:SAMPE, 2018. [3] 袁鑫超.碳纤维复合材料多层内部结构及缺陷检测方法研究[D].成都:电子科技大学, 2018. YUAN X C.Study on multi-layer layer fiber structure and defect detection of carbon fiber composites[D].Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese). [4] CEMENSKA J, RUDBERG T, HENSCHEID M, et al.AFP automated inspection system performance and expectations[C]//Aerotech Congress & Exhibition.Warrendale:SAE International, 2017:2150. [5] RITTER J A, SJOGREN J F.Real-time infrared thermography inspection and control for automated composite marterial layup:US7513964[P].2009-04-07. [6] DENKENA B, SCHMIDT C, VÖLTZER K, et al.Thermographic online monitoring system for Automated Fiber Placement processes[J].Composites Part B:Engineering, 2016, 97:239-243. [7] SCHMIDT C, DENKENA B, VÖLTZER K, et al.Thermal image-based monitoring for the automated fiber placement process[J].Procedia CIRP, 2017, 62:27-32. [8] GREGORY E D, JUAREZ P D.In-situ thermography of automated fiber placement parts[J].AIP Conference Proceedings, 2018, 1949(1):060005. [9] 黄松岭, 李路明, 杨海青, 等.复合材料胶接缺陷的红外热像检测[J].宇航材料工艺, 2002, 32(6):43-46. HUANG S L, LI L M, YANG H Q, et al.Evaluation of composites bonding defects by infrared imaging testing[J].Aerospace Materials & Technology, 2002, 32(6):43-46(in Chinese). [10] 文立伟, 宋清华, 秦丽华, 等.基于机器视觉与UMAC的自动铺丝成型构件缺陷检测闭环控制系统[J].航空学报, 2015, 36(12):3991-4000. WEN L W, SONG Q H, QIN L H, et al.Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3991-4000(in Chinese). [11] ZAMBAL S, HEINDL C, EITZINGER C, et al.End-to-end defect detection in automated fiber placement based on artificially generated data[C]//Proc SPIE 11172, Fourteenth International Conference on Quality Control by Artificial Vision.Lausanne:International Society for Optics and Photonics, 2019:11172. [12] 路浩, 陈原.基于机器视觉的碳纤维预浸料表面缺陷检测方法[J].纺织学报, 2020, 41(4):51-57. LU H, CHEN Y.Surface defect detection method of carbon fiber prepreg based on machine vision[J].Journal of Textile Research, 2020, 41(4):51-57(in Chinese). [13] CHEN M J, JIANG M, LIU X L, et al.Intelligent inspection system based on infrared vision for automated fiber placement[C]//2018 IEEE International Conference on Mechatronics and Automation.Piscataway:IEEE Press, 2018:918-923. [14] SACCO C, BAZ RADWAN A, ANDERSON A, et al.Machine learning in composites manufacturing:A case study of Automated Fiber Placement inspection[J].Composite Structures, 2020, 250:112514. [15] SACCO C.Machine learning methods for rapid inspection of automated fiber placement manufactured composite structures[D].Columbia:University of South Carolina, 2019. [16] 蔡志强, 肖军, 文立伟, 等.基于预浸纱自动铺放缺陷的分割算法[J].航空材料学报, 2017, 37(2):21-27. CAI Z Q, XIAO J, WEN L W, et al.Algorithm of defect segmentation for AFP based on prepregs[J].Journal of Aeronautical Materials, 2017, 37(2):21-27(in Chinese). [17] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [18] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press, 2014:580-587. [19] LAW H, DENG J.CornerNet:Detecting objects as paired keypoints[J].International Journal of Computer Vision, 2020, 128(3):642-656. [20] FLIR.Free FLIR thermal dataset for algorithm training[DB/OL].(2020-06-21)[2020-06-21].https://www.flir.com/oem/adas/adas-dataset-form. [21] DENG J, DONG W, SOCHER R, et al.ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press, 2009:248-255. [22] WOLPERT A, TEUTSCH M, SARFRAZ M S, et al.Anchor-free small-scale multispectral pedestrian detection[DB/OL].arXiv preprint:2008.08418, 2020. [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press, 2017:936-944. [24] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press, 2018:8759-8768. [25] ZHANG Z.A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334. |