Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (24): 328551-328551.doi: 10.7527/S1000-6893.2023.28551
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Received:
2023-02-13
Revised:
2023-02-27
Accepted:
2023-04-17
Online:
2023-12-25
Published:
2023-04-21
Contact:
Yafei SONG
E-mail:yafei_song@163.com
Supported by:
CLC Number:
Peng DING, Yafei SONG. A cost-sensitive method for aerial target intention recognition[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551-328551.
Table 1
Feature space of air target intention
意图特征 | 特征描述 | 数据类型 |
---|---|---|
高度 | 敌空中目标的海拔高度 | 数值型 |
敌我距离 | 敌空中目标与我军事中心的距离 | 数值型 |
速度 | 敌空中目标的飞行速度 | 数值型 |
加速度 | 敌空中目标的飞行加速度 | 数值型 |
航向角 | 敌空中目标飞行方向(正北方向为0°,顺时针方向一周分为360°) | 数值型 |
方位角 | 我方军事建筑到敌空中目标方向的方位角(正北方向为0°,顺时针方向一周分为360°) | 数值型 |
雷达反射面积 | 敌空中目标在我方雷达上的回波大小 | 数值型 |
敌机类型 | 敌战斗机的种类型号 | 非数值型 |
对空雷达状态 | 敌机的对空雷达是否开启 | 非数值型 |
对地雷达状态 | 敌机的对地雷达是否开启 | 非数值型 |
机动类型 | 敌机主要采取的机动方式 | 非数值型 |
干扰状态 | 敌机的干扰装置是否开启 | 非数值型 |
Table 10
Comparison of different intention recognition models
模型 | Accuracy/% | Cost | H-error | L-error |
---|---|---|---|---|
LSTM | 85.86 | 2.131 9 | 139 | 158 |
LSTM-CAIR | 86.00 | 0.506 7 | 31 | 263 |
BiGRU-Attention | 91.43 | 1.135 7 | 75 | 105 |
BiGRU-Attention-CAIR | 90.14 | 0.411 0 | 29 | 178 |
Attention-TCN-BiGRU | 96.33 | 0.709 5 | 36 | 41 |
Attention-TCN-BiGRU-CAIR | 95.19 | 0.207 6 | 12 | 89 |
GRU-FCN | 98.57 | 0.346 7 | 18 | 12 |
GRU-FCN-CAIR | 96.14 | 0.175 7 | 4 | 77 |
Table 11
Results of evaluation indexes of ablationexperiment
意图类型 | Accuracy/% | |||||||
---|---|---|---|---|---|---|---|---|
① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | |
攻击 | 77.0 | 88.7 | 91.3 | 95.3 | 95.0 | 91.7 | 99.7 | 99.3 |
突防 | 86.0 | 96.0 | 99.0 | 99.7 | 87.7 | 95.3 | 97.7 | 96.3 |
干扰 | 85.3 | 93.7 | 99.3 | 99.7 | 83.7 | 88.3 | 96.3 | 97.7 |
监视 | 88.3 | 91.0 | 97.7 | 99.0 | 85.7 | 94.0 | 96.7 | 98.0 |
侦察 | 85.0 | 92.3 | 94.0 | 99.3 | 76.7 | 84.3 | 90.3 | 94.3 |
佯攻 | 79.3 | 81.7 | 93.0 | 97.0 | 73.3 | 79.3 | 89.0 | 87.3 |
撤退 | 100 | 100 | 100 | 100 | 100 | 98.0 | 99.7 | 100 |
1 | 姚庆锴, 柳少军, 贺筱媛, 等. 战场目标作战意图识别问题研究与展望[J]. 指挥与控制学报, 2017, 3(2): 127-131. |
YAO Q K, LIU S J, HE X Y, et al. Research and prospect of battlefield target operational intention recognition[J]. Journal of Command and Control, 2017, 3(2): 127-131 (in Chinese). | |
2 | XIA P C, CHEN M, ZOU J, et al. Prediction of air target intention utilizing incomplete information[C]∥Chinese Intelligent Systems Conference. Singapore: Springer, 2016: 395-403. |
3 | 陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19. |
CHEN Y M, LI C Y. Simulation of target tactical intention recognition based on knowledge map[J]. Computer Simulation, 2019, 36(8): 1-4, 19 (in Chinese). | |
4 | 尹翔, 张萌, 陈梦乔. 基于判别分析的空中目标作战意图识别[J]. 弹箭与制导学报, 2018, 38(3): 46-50. |
YIN X, ZHANG M, CHEN M Q. Combat intention recognition of the target in the air based on discriminant analysis[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(3): 46-50 (in Chinese). | |
5 | XU Y H, CHENG S Y, ZHANG H B, et al. Air target combat intention identification based on IE-DSBN[C]∥2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). Piscataway: IEEE Press, 2020: 36-40. |
6 | XU X M, YANG R N, FU Y. Situation assessment for air combat based on novel semi-supervised naive Bayes[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779. |
7 | 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322476. |
ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322476 (in Chinese). | |
8 | 翟翔宇, 杨风暴, 吉琳娜, 等. 标准化全连接残差网络空战目标威胁评估[J]. 火力与指挥控制, 2020, 45(6): 39-44. |
ZHAI X Y, YANG F B, JI L N, et al. Air combat targets threat assessment based on standardized fully connected network and residual network[J]. Fire Control & Command Control, 2020, 45(6): 39-44 (in Chinese). | |
9 | 钱钊, 刘钦, 鹿瑶, 等. 基于长短时神经网络的目标意图识别[J]. 太赫兹科学与电子信息学报, 2022, 20(11): 1156-1162. |
QIAN Z, LIU Q, LU Y, et al. Identification of target’s combat intention based on long short term memory network[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1156-1162 (in Chinese). | |
10 | 胡智勇, 刘华丽, 龚淑君, 等. 基于随机森林的目标意图识别[J]. 现代电子技术, 2022, 45(19): 1-8. |
HU Z Y, LIU H L, GONG S J, et al. Target intention recognition based on random forest[J]. Modern Electronics Technique, 2022, 45(19): 1-8 (in Chinese). | |
11 | TENG F, SONG Y F, GUO X P. Attention-TCN-BiGRU: An air target combat intention recognition model[J]. Mathematics, 2021, 9(19): 2412. |
12 | WANG S Y, WANG G, FU Q, et al. STABC-IR: An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism[J]. Chinese Journal of Aeronautics, 2023, 36(3): 316-334. |
13 | TENG F, GUO X P, SONG Y F, et al. An air target tactical intention recognition model based on bidirectional GRU with attention mechanism[J]. IEEE Access, 2021, 9: 169122-169134. |
14 | QU C X, GUO Z C, XIA S J, et al. Intention recognition of aerial target based on deep learning[J]. Evolutionary Intelligence, 2022: 1-9. |
15 | BHATT D, PATEL C, TALSANIA H, et al. CNN variants for computer vision: History, architecture, application, challenges and future scope[J]. Electronics, 2021, 10(20): 2470. |
16 | SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. |
17 | LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[DB/OL]. arXiv preprint:1506.00019, 2015. |
18 | LI X C, MA X F, XIAO F C, et al. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA)[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109309. |
19 | DEY R, SALEM F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]∥2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway: IEEE Press, 2017: 1597-1600. |
20 | LINDEMANN B, MÜLLER T, VIETZ H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-655. |
21 | CHENG J P, DONG L, LAPATA M. Long short-term memory-networks for machine reading[DB/OL]. arXiv preprint: 1601.06733, 2016. |
22 | GRAVES A. Long short-term memory[M]∥Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37-45. |
23 | CHENG Y, WANG D, ZHOU P, et al. Model compression and acceleration for deep neural networks: The principles, progress, and challenges[J]. IEEE Signal Processing Magazine, 2018, 35(1): 126-136. |
24 | LA ROSA L E C, SOTHE C, FEITOSA R Q, et al. Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179: 35-49. |
25 | ELSAYED N, MAIDA A S, BAYOUMI M. Deep gated recurrent and convolutional network hybrid model for univariate time series classification[DB/OL]. arXiv preprint:1812.07683, 2018. |
26 | KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2017, 6: 1662-1669. |
27 | 陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853. |
CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38(8): 1847-1853 (in Chinese). | |
28 | 朱可钦, 董彦非. 空战机动动作库设计方式研究[J]. 航空计算技术, 2001, 31(4): 50-52. |
ZHU K Q, DONG Y F. Study on the design of air combat maneuver library[J]. Aeronautical Computer Technique, 2001, 31(4): 50-52 (in Chinese). | |
29 | 孙艺聪, 田润澜, 王晓峰, 等. 基于改进CLDNN的辐射源信号识别[J]. 系统工程与电子技术, 2021, 43(1): 42-47. |
SUN Y C, TIAN R L, WANG X F, et al. Emitter signal recognition based on improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(1): 42-47 (in Chinese). | |
30 | FAWAZ H I, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. |
31 | ZHAO B D, LU H Z, CHEN S F, et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics, 2017, 28(1): 162-169. |
32 | RUIZ A P, FLYNN M, LARGE J, et al. The great multivariate time series classification bake off: A review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2021, 35(2): 401-449. |
33 | PINNERI C, SAWANT S, BLAES S, et al. Sample-efficient cross-entropy method for real-time planning[DB/OL]. arXiv preprint: 2008.06389, 2020. |
34 | KIEFER J, WOLFOWITZ J. Stochastic estimation of the maximum of a regression function[J]. The Annals of Mathematical Statistics, 1952, 23(3): 462-466. |
35 | TIELEMAN T, HINTON G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26-31. |
36 | KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv Preprint: 1412.6980, 2014. |
37 | 滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32. |
TENG F, LIU S, SONG Y F. BiLSTM-attention: An air target tactical intention recognition model[J]. Aero Weaponry, 2021, 28(5): 24-32 (in Chinese). | |
38 | ZHU W B, WEBB Z T, MAO K T, et al. A deep learning approach for process data visualization using t-distributed stochastic neighbor embedding[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9564-9575. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[3] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[4] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[5] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[6] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[7] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[8] | Xiaohang LI, Jianjiang ZHOU. Multi⁃scale modality fusion network based on adaptive memory length [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628977-628977. |
[9] | Haowen LUO, Shaoming HE, Tianyu JIN, Zichao LIU. Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328400-328400. |
[10] | Yunhe ZHAO, Shengnan WANG. Solution to stress intensity factor by weight function method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228367-228367. |
[11] | Shuyi GAO, Defu LIN, Duo ZHENG, Xinyu HU. Intelligent cooperative interception strategy of aircraft against cluster attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328301-328301. |
[12] | Yubin YUAN, Yiquan WU, Langyue ZHAO, Jinlin CHEN, Qichang ZHAO. Research progress of UAV aerial video multi⁃object detection and tracking based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28334-028334. |
[13] | Rongsheng ZHANG, Yansheng WU, Xudong QIN, Puzhuo ZHANG. A real⁃time in⁃flight wind estimation and prediction method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327860-327860. |
[14] | Qiang WANG, Letian WU, Yong WANG, Huan WANG, Wankou YANG. An infrared small target detection method based on key point [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 328173-328173. |
[15] | SU Lingfei, HUA Yongzhao, DONG Xiwang, REN Zhang. Human-UAV swarm multi-modal intelligent interaction methods [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 727001-727001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341