ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2019, Vol. 40 ›› Issue (8): 122777-122777.doi: 10.7527/S1000-6893.2018.22777
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
FAN Zhongyun1,2, ZHOU Zhou1,2, ZHU Xiaoping2, GUO Jiahao1,2
Received:
2018-11-09
Revised:
2018-12-05
Online:
2019-08-15
Published:
2018-12-24
Supported by:
CLC Number:
FAN Zhongyun, ZHOU Zhou, ZHU Xiaoping, GUO Jiahao. Coupled aerodynamic analysis and airfoil optimization design for over-wing propeller configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 122777-122777.
[14] | HARRISON N A, VASSBERG J C, DEHAAN M A, et al. The design and test of a swept wing upper surface blowing concept[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013. |
[1] | PASAMANICK J. Langley full-scale-tunnel tests of the custer channel wing airplane:NACA RM-L53A09[R]. Washington, D.C.:NASA, 1953. |
[15] | DRǍGAN V. A study of conventional upper surface blown wing configurations[J]. Review of the Air Force Academy, 2012. |
[2] | JOHNSON J L, WHITE E R. Exploratory low-speed wind-tunnel investigation of advanced commuter configurations including an over-the-wing propeller design:AIAA-1983-2531[R]. Reston, VA:AIAA, 1983. |
[16] | PFINGSTEN R C, KAMRUZZAMAN M. Use of upper surface blowing and circulation control for gapless high-lift configurations[C]//Ceas/katnet Conference on Key Aerodynamics Technologies, 2005. |
[3] | JOHNSON J L, WHITE E R. Over-the-wing propeller:U.S. Patent No. 4629147[P]. 1986. |
[17] | KEEN E. A conceptual design methodology for predicting the aerodynamics of upper surface blowing on airfoils and wings[D]. Blacksburg, VA:Virginia Polytechnic Institute & State University, 2004. |
[4] | GUNTHER C, MARCHMAN J, VANBLARCOM R. Comparison of channel wing theoretical and experimental performance:AIAA-2000-0257[R]. Reston, VA:AIAA, 2000. |
[18] | HILL G A, KANDIL O A, HAHN A S. Aerodynamic investigations of an advanced over-the-wing nacelle transport aircraft configuration[J]. Journal of Aircraft, 2009, 46(1):25-35. |
[19] | RAJAGOPALAN R G, LIM C K. Laminar flow analysis of a rotor in hover[J]. Journal of the American Helicopter Society, 1991, 36(1):12-23. |
[5] | ENGLAR R J, CAMPBELL B A. Pneumatic channel wing powered lift advanced super-stol aircraft:AIAA-2002-3275[R]. Reston, VA:AIAA, 2002. |
[20] | CHAFFIN M S, BERRY J D. Navier-Stokes simulation of a rotor using a distributed pressure disk method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995. |
[21] | 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安:西北工业大学, 2015. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese). |
[6] | ENGLAR R J, CAMPBELL B A. Development of pneumatic channel wing powered-lift advanced SuperSTOL aircraft:AIAA-2002-2929[R]. Reston, VA:AIAA, 2002. |
[22] | LE CHUITON F. Actuator disc modelling for helicopter rotors[J]. Aerospace Science and Technology, 2004, 8(4):285-297. |
[7] | MÜLLER L, HEINZE W, KOŽULOVIĆD, et al. Aerodynamic installation effects of an over-the-wing propeller on a high-lift configuration[J]. Journal of Aircraft, 2014, 51(1):249-258. |
[23] | KHIER W. Time-accurate versus actuator disk simulations of complete helicopters[C]//High Performance Computing in Science and Engineering, 2006:209-220. |
[24] | 童自立, 孙茂. 共轴式双旋翼流动的N-S方程模拟[J]. 航空学报, 1998, 19(1):1-5. TONG Z L, SUN M. Navier-Stokes calculations of coaxial rotor aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):1-5(in Chinese). |
[25] | 宋长虹, 林永峰,陈文轩,等. 基于动量源方法的涵道尾桨CFD分析[J]. 直升机技术, 2009(1):6-11. SONG C H, LIN Y F, CHEN W X, et al. CFD Analysis for the ducted tail rotor based on momentum-source method[J]. Helicopter Technique, 2009(1):6-11(in Chinese). |
[8] | MÜLLER L, FRIEDRICHS J, KOZULOVIC D. Unsteady flow simulations of an over-the-wing propeller configuration[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2014:28-30. |
[9] | BECK S C, MÜLLER L, LANGER S C. Numerical assessment of the vibration control effects of porous liners on an over-the-wing propeller configuration[J]. The Aeronautical Journal, 2016, 7(2):1-12. |
[26] | GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angels of attack from -10° to 110°[R].Washington, D.C.:NASA, 1962. |
[10] | WANG H B, ZHU X, ZHOU Z. Numerical simula-tion of the propeller/wing interactions at low Reynolds number[C]//International Council of the Aeronautical Sciences, 2016. |
[11] | 王红波, 祝小平,周洲,等. 垂直起降飞机新型气动布局设计分析[J].西北工业大学学报, 2017, 35(2):189-196. WANG H B, ZHU X P, ZHOU Z,et al. New configuration design and analysis for a vertical take-off/hovering solar powered aircraft[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):189-196(in Chinese). |
[27] | DORFLING J, ROKHSAZ K. Non-linear aerodynamic modeling of airfoils for accurate blade element propeller performance predictions[C]//32nd AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2014. |
[12] | MARCUS E A, VRIES R D, KULKARNI A R, et al. Aerodynamic investigation of an over-the-wing propeller for distributed propulsion[C]//AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018. |
[28] | UHLIG D V, SELIG M S. Post stall propeller behavior at low reynolds numbers[C]//AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008. |
[29] | 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12):2820-2825. XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12):2820-2825(in Chinese). |
[30] | 苏运德, 叶正寅,许和勇. 桨尖间隙和双桨间距对涵道螺旋桨气动性能的影响[J]. 航空动力学报, 2014, 29(6):1468-1475. SU Y D, YE Z Y, XU H H. Influence of tip clearance and propeller separation space on aerodynamic performance of ducted propeller[J]. Journal of Aerospace Power, 2014, 29(6):1468-1475(in Chinese). |
[31] | 李晓华, 郭正,陈清阳. 涵道螺旋桨气动特性数值模拟[J]. 国防科技大学学报, 2015(4):31-35. LI X H, GUO Z, CHEN Q Y. Numerical simulation of ducted rotor's aerodynamic characteristics[J]. Journal of National University of Defense Technology, 2015(4):31-35(in Chinese). |
[13] | COCHRANE J A, CARROS R J. Hybrid upper surface blown flap propulsive-lift concept for the QSRLP[J]. Journal of Aircraft, 1976, 13(11):855-860. |
[32] | KOSHAKJI A, QUARTERONI A, ROZZA G. Free form deformation techniques applied to 3D shape optimization problems[J]. Communications in Applied & Industrial Mathematics, 2013, 4. |
[14] | HARRISON N A, VASSBERG J C, DEHAAN M A, et al. The design and test of a swept wing upper surface blowing concept[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013. |
[15] | DRǍGAN V. A study of conventional upper surface blown wing configurations[J]. Review of the Air Force Academy, 2012. |
[16] | PFINGSTEN R C, KAMRUZZAMAN M. Use of upper surface blowing and circulation control for gapless high-lift configurations[C]//Ceas/katnet Conference on Key Aerodynamics Technologies, 2005. |
[17] | KEEN E. A conceptual design methodology for predicting the aerodynamics of upper surface blowing on airfoils and wings[D]. Blacksburg, VA:Virginia Polytechnic Institute & State University, 2004. |
[18] | HILL G A, KANDIL O A, HAHN A S. Aerodynamic investigations of an advanced over-the-wing nacelle transport aircraft configuration[J]. Journal of Aircraft, 2009, 46(1):25-35. |
[19] | RAJAGOPALAN R G, LIM C K. Laminar flow analysis of a rotor in hover[J]. Journal of the American Helicopter Society, 1991, 36(1):12-23. |
[20] | CHAFFIN M S, BERRY J D. Navier-Stokes simulation of a rotor using a distributed pressure disk method[C]//Proceedings of 51st Annual Forum of American Helicopter Society, 1995. |
[21] | 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安:西北工业大学, 2015. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese). |
[22] | LE CHUITON F. Actuator disc modelling for helicopter rotors[J]. Aerospace Science and Technology, 2004, 8(4):285-297. |
[23] | KHIER W. Time-accurate versus actuator disk simulations of complete helicopters[C]//High Performance Computing in Science and Engineering, 2006:209-220. |
[24] | 童自立, 孙茂. 共轴式双旋翼流动的N-S方程模拟[J]. 航空学报, 1998, 19(1):1-5. TONG Z L, SUN M. Navier-Stokes calculations of coaxial rotor aerodynamics[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):1-5(in Chinese). |
[25] | 宋长虹, 林永峰,陈文轩,等. 基于动量源方法的涵道尾桨CFD分析[J]. 直升机技术, 2009(1):6-11. SONG C H, LIN Y F, CHEN W X, et al. CFD Analysis for the ducted tail rotor based on momentum-source method[J]. Helicopter Technique, 2009(1):6-11(in Chinese). |
[26] | GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angels of attack from -10° to 110°[R].Washington, D.C.:NASA, 1962. |
[27] | DORFLING J, ROKHSAZ K. Non-linear aerodynamic modeling of airfoils for accurate blade element propeller performance predictions[C]//32nd AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2014. |
[28] | UHLIG D V, SELIG M S. Post stall propeller behavior at low reynolds numbers[C]//AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008. |
[29] | 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12):2820-2825. XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12):2820-2825(in Chinese). |
[30] | 苏运德, 叶正寅,许和勇. 桨尖间隙和双桨间距对涵道螺旋桨气动性能的影响[J]. 航空动力学报, 2014, 29(6):1468-1475. SU Y D, YE Z Y, XU H H. Influence of tip clearance and propeller separation space on aerodynamic performance of ducted propeller[J]. Journal of Aerospace Power, 2014, 29(6):1468-1475(in Chinese). |
[31] | 李晓华, 郭正,陈清阳. 涵道螺旋桨气动特性数值模拟[J]. 国防科技大学学报, 2015(4):31-35. LI X H, GUO Z, CHEN Q Y. Numerical simulation of ducted rotor's aerodynamic characteristics[J]. Journal of National University of Defense Technology, 2015(4):31-35(in Chinese). |
[32] | KOSHAKJI A, QUARTERONI A, ROZZA G. Free form deformation techniques applied to 3D shape optimization problems[J]. Communications in Applied & Industrial Mathematics, 2013, 4. |
[1] | Yulian GONG, Jianguo ZHANG, Zhigang WU, Guangyuan CHU, Xiaoduo FAN, Ying HUANG. Reliability algorithm of composite structure based on active learning basis-adaptive PC-Kriging model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 228982-228982. |
[2] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[3] | Li NONG, Zishuai SHENG, Jun XIAN, Huaibao ZHANG. Numerical simulation of separated flow around iced airfoil based on high⁃order schemes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729291-729291. |
[4] | Peihan WANG, Zhigang WU, Chao YANG, Xiaoxu SUN. Patch module method for flight simulation of flexible aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127038-127038. |
[5] | Yufei WU, Teng LONG, Renhe SHI, Yao ZHANG. Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259-528259. |
[6] | Fanmin MENG, Nuo MA, Wenchao MA, Junhui MENG, Wenguang LI. Wet modal analysis and tests for inflatable wing with swept air-beams [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 227098-227098. |
[7] | Huailu LI, Xu WANG, Xiao WANG, Tong ZHAO, Weiwei ZHANG. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128410-128410. |
[8] | Libo WANG, Zhiwei JING, Chu TANG. Modelling and simulation of flexible aircraft in blast wind [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 228214-228214. |
[9] | Jiangtao HUANG, Lin ZHOU, Xian CHEN, Chuang MA, Gang LIU, Zhenghong GAO. Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127757-127757. |
[10] | Hechao ZHENG, Jianhui WANG, Ziyang HU, Zhonghai ZHANG, Guangping HE. Test of aerodynamic modeling accuracy of bird⁃scale flapping⁃wing vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127525-127525. |
[11] | SONG Wei, AI Bangcheng. Multibody separation dynamics: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 25950-025950. |
[12] | LI Qian, WANG Yankui, JIA Yuhong. Roll oscillations over wing-body configuration with strake wings: Experiment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526008-526008. |
[13] | LI Jie, ZHANG Heng, YANG Zhao. Trade-off aerodynamic design of basic wing for demonstrator UAVs with special layout for high-subsonic laminar flow verification [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526786-526786. |
[14] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Aerodynamic performance optimization design of middle wing section of a special laminar unmanned flight in high-speed cruise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526766-526766. |
[15] | YAN Chao. Achievements and predicaments of CFD in aeronautics in past forty years [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 526490-526490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341