1 |
BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
|
2 |
STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583.
|
3 |
SAAD T. Turbulence modeling for beginners[EB/OL]. (2017-06-24)[2023-04-12]. .
|
4 |
SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
|
5 |
WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310.
|
6 |
JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
|
7 |
郎需巍, 刘星. 数值模拟积冰翼型及气动特性分析[J]. 航空计算技术, 2015, 45(5): 82-85.
|
|
LANG X W, LIU X. Numerical simulation of icing airfoil and analysis of aerodynamic characteristics[J]. Aeronautical Computing Technique, 2015, 45(5): 82-85 (in Chinese).
|
8 |
赵宾宾, 黎先平, 李杰, 等. 前缘角冰几何参数对翼型失速特性的影响分析研究[J]. 西北工业大学学报, 2023, 41(1): 39-46.
|
|
ZHAO B B, LI X P, LI J, et al. Influence of geometric parameters of leading edge horn-ice on stall characteristics of airfoil[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 39-46 (in Chinese).
|
9 |
陈科, 曹义华, 安克文, 等. 应用混合网格分析复杂积冰翼型气动性能[J]. 航空学报, 2007, 28(): 87-91.
|
|
CHEN K, CAO Y H, AN K W, et al. Application of hybrid grid to analyzing complex iced airfoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup 1): 87-91 (in Chinese).
|
10 |
张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520746.
|
|
ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520746 (in Chinese).
|
11 |
LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681.
|
12 |
LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876.
|
13 |
CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1): 38-54.
|
14 |
CÉCORA R D, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics: AIAA-2012-0563[R]. Reston: AIAA, 2012.
|
15 |
TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model (invited)[C]∥ Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015.
|
16 |
EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5): 1524-1541.
|
17 |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
|
18 |
DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
|
19 |
WANG S, DENG X G, WANG G X, et al. Blending the eddy-viscosity and Reynolds-stress models using uniform high-order discretization[J]. AIAA Journal, 2020, 58(12): 5361-5378.
|
20 |
RUMSEY C. Turbulence modeling resource[EB/OL]. (2022-03-01) [2023-04-12]. .
|
21 |
GURBACKI H M. Ice-induced unsteady flowfield effects on airfoil performance[D]. Washington, D.C.: NASA, 2003.
|
22 |
ADDY H, BROEREN A, ZOECKLER J, et al. A wind tunnel study of icing effects on a business jet airfoil[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
|
23 |
Computational Aerodynamics Institute of China Aerodynamics Research and Development Center. Verification and validation calibration model database. 1.0[R]. National Space Science Data Center. 2022.
|