[1] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29. [2] BECK N, LANDA T, SEITZ A, et al. Drag reduction by laminar flow control[J]. Energies, 2018, 11(1):252. [3] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231. [4] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique.[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [5] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164. [6] WAGNER R D, MADDALON D V, BARTLETT D W, et al. Fifty years of laminar flow flight testing[C]//Aerospace Technology Conference and Exposition, 1988:995-1019. [7] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [8] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese). [9] COLLIER F S. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993:2987. [10] BELISLE M, NEALE T, REED H, et al. Design of a swept-wing laminar flow control flight experiment for transonic aircraft[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010:4381. [11] HANSEN H. Laminar flow technology-the Airbus view[C]//27th International Congress of the Aeronautical Sciences, 2010. [12] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese). [13] SOBIECZKY H, YU N J, FUNG K Y, et al. New method for designing shock-free transonic configurations[J]. AIAA Journal, 1979, 17(7):722-729. [14] RAJ P, MIRANDA L R, SEEBASS A R. A cost-effective method for shock-free supercritical wing design[J]. Journal of Aircraft, 1982, 19(4):283-289. [15] LEI R W, BAI J Q, XU D Y. Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method[J]. Aerospace Science and Technology, 2019, 93:105285. [16] LIN W, CHEN A, TINOCO E. 3D transonic nacelle and winglet design[C]//Flight Simulation Technologies Conference and Exhibit. Reston:AIAA, 1990:3064. [17] LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9):1842-1854. [18] OBERT E. Aerodynamic design of transport aircraft[M]. Amsterdam:IOS Press, 2009. [19] 张锡金, 宋文滨, 张淼. 型号空气动力学设计[M]. 上海:上海交通大学出版社, 2020. ZHANG X J, SONG W B, ZHANG M. Aircraft aerodynamic design[M]. Shanghai:Shanghai Jiao Tong University Press, 2020(in Chinese). [20] YANG Z, LI J, JIN J, et al. Investigation and improvement of stall characteristic of high-lift configuration without slats[J]. International Journal of Aerospace Engineering, 2019, 2019:7859482. [21] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151. [22] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese). [23] LEVY D W, ZICKUHR T, VASSBERG J, et al. Data summary from the first AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882. [24] SHI W B, LI J, GAO H X, et al. Numerical investigations on drag reduction of a civil light helicopter fuselage[J]. Aerospace Science and Technology, 2020, 106:106104. [25] LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4):1539-1551. [26] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422. |