Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (9): 529828-529828.doi: 10.7527/S1000-6893.2023.29828
• Articles • Previous Articles Next Articles
Jiaqi LIU, Rongqian CHEN(), Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU
Received:
2023-11-02
Revised:
2023-11-27
Accepted:
2023-12-25
Online:
2024-05-15
Published:
2024-01-04
Contact:
Rongqian CHEN
E-mail:rqchen@xmu.edu.cn
Supported by:
CLC Number:
Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828.
1 | 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10. |
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese). | |
2 | 邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16. |
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese). | |
3 | 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179. |
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese). | |
4 | ALLEN L D, LIM J W, HAEHNEL R B, et al. Rotor blade design framework for airfoil shape optimization with performance considerations[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 0068. |
5 | 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报, 2021, 39(6): 1-36. |
HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: history, current status, and future directions[J]. Acta Aerodynamica Sinica, 2021, 39(6): 1-36 (in Chinese). | |
6 | 张卫国, 孙俊峰, 招启军, 等. 旋翼翼型气动设计与验证方法[J]. 空气动力学学报, 2021, 39(6): 136-148, 155. |
ZHANG W G, SUN J F, ZHAO Q J, et al. Aerodynamic design and verification methods of rotor airfoils[J]. Acta Aerodynamica Sinica, 2021, 39(6): 136-148, 155 (in Chinese). | |
7 | 李萍, 庄开莲, 李静. 国外直升机旋翼翼型研究综述[J]. 直升机技术, 2007(3): 103-109. |
LI P, ZHUANG K L, LI J. Summary of research on helicopter rotor airfoil abroad[J]. Helicopter Technique, 2007(3): 103-109 (in Chinese). | |
8 | 丁存伟, 杨旭东. 一种旋翼翼型多点多约束气动优化设计策略[J]. 航空计算技术, 2013, 43(1): 52-57. |
DING C W, YANG X D. Multi-point aerodynamic optimization design strategy of rotor airfoil with multi-constrain conditions[J]. Aeronautical Computing Technique, 2013, 43(1): 52-57 (in Chinese). | |
9 | JONES B, CROSSLEY W, LYRINTZIS A. Aerodynamic and aeroacoustic optimization of airfoils via a parallel genetic algorithm[C]∥ 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998: 4811. |
10 | 王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1486-1495. |
WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1486-1495 (in Chinese). | |
11 | 宋超, 周铸, 李伟斌, 等. 旋翼翼型高维多目标气动优化设计[J]. 北京航空航天大学学报, 2022, 48(1): 95-105. |
SONG C, ZHOU Z, LI W B, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105 (in Chinese). | |
12 | VU N A, LEE J W, SHU J I. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance[J]. Chinese Journal of Aeronautics, 2013, 26(1): 1-8. |
13 | 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226. |
YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226 (in Chinese). | |
14 | 孙俊峰, 卢风顺, 黄勇, 等. 旋翼翼型气动设计与评估软件HRADesign[J]. 空气动力学学报, 2021, 39(4): 59-68. |
SUN J F, LU F S, HUANG Y, et al. Rotor airfoil aerodynamic design and evaluation software HRADesign[J]. Acta Aerodynamica Sinica, 2021, 39(4): 59-68 (in Chinese). | |
15 | 孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4): 437-441. |
SUN J F, LIU G, JIANG X, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4): 437-441 (in Chinese). | |
16 | 崔森润, 李国强, 张卫国, 等. 直升机旋翼翼型高效优化设计方法[J]. 航空动力学报, 2023,doi: 10.13224/j.cnki.jasp.20220819 . |
CUI S R, LI G Q, ZHANG W G, et al. Efficient optimization design method of helicopter rotor airfoil[J]. Journal of Aerospace Power, 2023,doi: 10.13224/j.cnki.jasp.20220819 (in Chinese). | |
17 | ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552. |
18 | 尚克明, 招启军, 王海. 基于Euler方程的直升机旋翼翼型反设计方法[J]. 直升机技术, 2008(3): 92-97. |
SHANG K M, ZHAO Q J, WANG H. An inverse design method for the helicopter rotor airfoil based on Euler equation[J]. Helicopter Technique, 2008(3): 92-97 (in Chinese). | |
19 | 尚克明, 招启军, 赵国庆, 等. 直升机旋翼翼型及桨叶气动外形反设计分析[J]. 南京航空航天大学学报, 2010, 42(5): 550-556. |
SHANG K M, ZHAO Q J, ZHAO G Q, et al. Inverse design analysis on helicopter rotor airfoils and aerodynamic shapes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 550-556 (in Chinese). | |
20 | 赵国庆, 招启军. 基于目标压力分布的旋翼先进气动外形反设计分析方法[J]. 航空学报, 2014, 35(3): 744-755. |
ZHAO G Q, ZHAO Q J. Inverse design analysis method on rotor with advanced aerodynamic configuration based upon target pressure distribution[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 744-755 (in Chinese). | |
21 | 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962. |
ZHAO H, GAO Z H, XIA L. Novel multi-fidelity surrogate model assisted many-objective optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 126962 (in Chinese). | |
22 | 陈笑天, 吴裕平, 田旭. 旋翼翼型中高速综合气动优化设计方法研究[J]. 航空科学技术, 2019, 30(9): 19-24. |
CHEN X T, WU Y P, TIAN X. Research on comprehensive aerodynamic optimum design method of rotor airfoil at medium and high speed[J]. Aeronautical Science & Technology, 2019, 30(9): 19-24 (in Chinese). | |
23 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
24 | BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52: 477-508. |
25 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
26 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
27 | 孙刚, 王聪, 王立悦, 等. 人工智能在气动设计中的应用与展望[J]. 民用飞机设计与研究, 2021(3): 1-9, 147. |
SUN G, WANG C, WANG L Y, et al. Application and prospect of artificial intelligence in aerodynamic design[J]. Civil Aircraft Design & Research, 2021(3): 1-9, 147 (in Chinese). | |
28 | LI J C, DU X S, MARTINS J R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences, 2022, 134: 100849. |
29 | KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4. |
30 | Dadone L U. Dynamic and analytical study of a rotor airfoil: NASA CR-2988[R]. Washington, D. C.: NASA, 1987. |
31 | COOK P H, FIRMIN M C P, MCDONALD M A. Aerofoil RAE 2822: Pressure distributions, and boundary layer and wake measurements[R]. Pairs: AGARD, 1979. |
32 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
33 | BAGAI A. Aerodynamic Design of the Sikorsky X2 Technology Demonstrator™ Main Rotor Blade[C]∥American Helicopter Society 64th Annual Forum Proceedings. Rockville: American Helicopter Society, 2008: 1-16. |
34 | LIU J Q, CHEN R Q, SONG Q C, et al. Active flow control of helicopter rotor based on coflow jet[J]. International Journal of Aerospace Engineering, 2022, 2022: 9299470. |
[1] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[2] | Shusheng CHEN, Cong FENG, Zhaokang ZHANG, Ke ZHAO, Xinyang ZHANG, Zhenghong GAO. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596-629596. |
[3] | Yuhan LI, Baoyu YANG, Yinong WU, Qiang ZHANG, Xiao TANG. Research on parameters correction method for thermal model of satellite optomechanical load [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628814-628814. |
[4] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[5] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[6] | Jing YU, Anlin JIANG, Liang LIU, Xiaojun WU, Yewei GUI, Shenshen LIU. PCA aerodynamic geometry parametrization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129125-129125. |
[7] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[8] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[9] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[10] | Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962. |
[11] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[12] | Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924. |
[13] | Zhiyang ZHENG, Yang ZHANG, Zhao ZHANG, Baohai WU, Ying ZHANG. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426805-426805. |
[14] | Ting YU, Luyi LI, Yushan LIU, Zeming CHANG. Efficient Bayesian updating method under observation uncertainty and its application in wing structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 228592-228592. |
[15] | Peng DING, Yafei SONG. A cost-sensitive method for aerial target intention recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551-328551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341