1 |
宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993: 1-4.
|
|
ZHAOHONG S. Typical failure analysis of aero-engine[M]. Beijing: Beihang University Press, 1993: 1-4 (in Chinese).
|
2 |
陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391.
|
|
CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391 (in Chinese).
|
3 |
徐可君, 秦海勤, 江龙平. 基于EMD和HHT的航空发动机转子-机匣振动信号分析[J]. 振动与冲击, 2011, 30(7): 237-240.
|
|
XU K J, QIN H Q, JIANG L P. Rotor-case vibration signal analysis of an aero engine based on EMD and HHT[J]. Journal of Vibration and Shock, 2011, 30(7): 237-240 (in Chinese).
|
4 |
YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: A review with applications[J]. Signal Processing, 2014, 96: 1-15.
|
5 |
殷勤业, 黄朝云. 时-频分析中的不确定性原理[J]. 西安交通大学学报, 1996, 30(9): 1-7.
|
|
YINQIN Y, HUANG Z Y. Concept of the uncertainty principle in time and frequency analysis[J]. Journal of Xi’an Jiaotong University, 1996, 30(9): 1-7 (in Chinese).
|
6 |
DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261.
|
7 |
YU G, YU M J, XU C Y. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054.
|
8 |
LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126.
|
9 |
LEI Y G, HE Z J, ZI Y Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1327-1338.
|
10 |
ZHAO X M, PATEL T H, ZUO M J. Multivariate EMD and full spectrum based condition monitoring for rotating machinery[J]. Mechanical Systems and Signal Processing, 2012, 27: 712-728.
|
11 |
FELDMAN M. Analytical basics of the EMD: Two harmonics decomposition[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2059-2071.
|
12 |
VOLD H, LEURIDAN J. High resolution order tracking at extreme slew rates, using Kalman tracking filters[C]∥SAE Technical Paper Series. Warrendale: SAE International, 1993: 931288.
|
13 |
PAN M C, CHU W C, LE D D. Adaptive angular-velocity Vold-Kalman filter order tracking - Theoretical basis, numerical implementation and parameter investigation[J]. Mechanical Systems and Signal Processing, 2016, 81: 148-161.
|
14 |
FORBES G L, RANDALL R B. Estimation of turbine blade natural frequencies from casing pressure and vibration measurements[J]. Mechanical Systems and Signal Processing, 2013, 36(2): 549-561.
|
15 |
SRIPRIYA N, NAGARAJAN T. Pitch estimation using harmonic product spectrum derived from DCT[C]∥ 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013). Piscataway: IEEE Press, 2014.
|
16 |
PATIL A P, MISHRA B K, HARSHA S P. Fault diagnosis of rolling element bearing using autonomous harmonic product spectrum method[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2021, 235(3): 396-411.
|
17 |
ZHAO M, LIN J, MIAO Y H, et al. Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings[J]. Measurement, 2016, 91: 421-439.
|
18 |
KIELB R E, BARTER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities: A compressor blade study[C]∥Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference. NewYork: ASME, 2009: 399-406.
|
19 |
FENG Z P, ZHU W Y, ZHANG D. Time-Frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds[J]. Mechanical Systems and Signal Processing, 2019, 128: 93-109.
|
20 |
LI Y B, FENG K, LIANG X H, et al. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy[J]. Journal of Sound and Vibration, 2019, 439: 271-286.
|
21 |
ZHAO D Z, CHENG W D, GAO R X, et al. Generalized vold-kalman filtering for nonstationary compound faults feature extraction of bearing and gear[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 401-410.
|
22 |
VOLD H, LEURIDAN J. High resolution order tracking at extreme slew rates using Kalman tracking filters[J]. Shock and Vibration, 1995, 2(6): 507-515.
|
23 |
张文海. 多转子燃气轮机谐频振动同步跟踪方法研究[D]. 北京: 北京化工大学, 2020: 44-45.
|
|
ZHANG W H. Research on harmonic frequency synchronous tracking method of multi-rotor gas turbine[D]. Beijing: Beijing University of Chemical Technology, 2020: 44-45 (in Chinese).
|