Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 29713-029713.doi: 10.7527/S1000-6893.2024.29713
• Reviews • Previous Articles Next Articles
Zeyong YIN1(), Gaiqi LI2, Jiancheng SHI2, Yueqian YIN2
Received:
2023-10-12
Revised:
2023-11-10
Accepted:
2024-01-11
Online:
2024-04-15
Published:
2024-01-15
Contact:
Zeyong YIN
E-mail:yinzy14500043@608.aecc
Supported by:
CLC Number:
Zeyong YIN, Gaiqi LI, Jiancheng SHI, Yueqian YIN. Concept, method and practice of advanced versatile core engine derivative[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 29713-029713.
Table 1
Development of typical versatile core engine derivative in foreign countries
核心机 | 派生发展 | ||
---|---|---|---|
涡轴发动机 | 涡桨发动机 | 涡扇发动机 | |
T406核心机 (14级轴流,压比14, 环形直流燃烧室,2级轴流涡轮) | T406-AD-400 (功率4 586 kW, 耗油率0.255 kg/(kW∙h) (最大连续状态),装V-22) | AE2100J (功率3 426 kW, 装Saab 2000) | AE3007 (涵道比5.0,推力3 060 daN, 耗油率0.400 kg/(daN·h), 装EMB-145) |
GE27/GE38核心机 (5级轴流+一级离心,压比23, 环形直流燃烧室,2级冷却涡轮) | T407 (功率4 400 kW) | GLC38 (功率4 400 kW) | CFE738 (涵道比5.4,推力2 662 daN, 耗油率0.389 kg/(kgf·h), 装“猎鹰”2000) |
T55核心机 (7级轴流+一级离心,压比9.3, 环形回流燃烧室,2级冷却涡轮) | T55-L-714 (功率3 629 kW, 耗油率0.313 5 kg/(kW∙h), 装CH-47D) | ALF502 (涵道比5.0~5.89,推力2 978 daN, 耗油率0.422 kg/(daN·h), 装“挑战者”600) | |
T64核心机 (14级轴流,压比14, 环形直流燃烧室,2级冷却涡轮) | T64-GE-100 (功率3 326 kW, 耗油率0.286 kg/(kW∙h), 装CH-53E) | CT64-820-4 (功率2 336 kW, 装DHC-5D/5E) | TF34/CF34 (涵道比6.2,推力4 133 daN, 耗油率0.37 kg/(daN·h), 装“挑战者”601) |
RTM322核心机 (3级轴流+一级离心,压比15, 短环形燃烧室,2级冷却涡轮) | 涡轴型 (功率1 565~2 237 kW, 耗油率0.27 kg/(kW∙h) (最大连续状态),装EH101、NH90) | 涡桨型 (功率1 342~1 864 kW) | 涡扇型 (推力1 009~1 546 daN,装S-3A) |
D36核心机 (7级轴流,环形燃烧室, 1级冷却涡轮) | D136 (功率7 457 kW, 耗油率0.278 kg/(kW∙h),装米-26) | D36 (涵道比6.3,推力6 374 daN, 耗油率0.367 kg/(daN·h), 装安-72等) |
Table 4
Market forecast of various types of engines
发动机类型 | 推力/功率等级 | 需求量/台 | 市场价值/亿美元 |
---|---|---|---|
涡轴发动机 | <800 kW | 1 018 | 4.9 |
800~1 500 kW | 1 052 | 13.7 | |
>1 500 kW | 484 | 10.2 | |
涡桨发动机 | <800 kW | 967 | 4.8 |
800 ~1 500 kW | 1 020 | 6.1 | |
>1 500 kW | 120 | 0.56 | |
涡扇发动机 | <2 000 kgf | 624 | 8.6 |
2 000~4 000 kgf | 1 340 | 22.9 | |
4 000~10 000 kgf | 810 | 37.2 | |
燃气轮机 | <500 kW | 900 | 6.0 |
500~1 500 kW | 500 | 4.8 | |
>1 500 kW | 300 | 5.0 |
Table 5
Parameters of an advanced versatile core engine
对象 | 构型 | 参数 | 指标 | 国际在役发动机核心机指标[ |
---|---|---|---|---|
压气机 | 3级轴流+1级离心 | 绝热效率 | 约0.80 | 0.79~0.80 |
低疲劳循环寿命/次 | 约15 000 | ~15 000 | ||
燃烧室 | 环形回流 | 燃烧效率 | 0.998 | 0.995~0.999 |
总压损失/% | 3.5 | 3.5~4.0 | ||
涡轮 | 2级轴流 | 绝热效率 | 约0.89 | 0.85~0.89 |
低疲劳循环寿命/次 | 约12 000 | ~12 000 | ||
核心机 | 进口流量/(kg∙s-1) | 约4.0 | 4.0~5.0 | |
压比 | ≥13 | 12~16 | ||
T4/K | 约1 550 | 1 350~1 600 | ||
涡轮出口温度/核心机进口温度 | 约4.0 | 3.7~4.2 |
Table 6
Advanced performance of derived turboshaft engine
发动机 | 功率/ kW | 耗油率/ (kg·kW-1·h-1) | 单位功率/(kW·s·kg-1) | 压气机换算流量/ (kg·s-1) | 压比 | 涡轮进口总温/K | 取证时首翻期寿命/h | 研制 国家 |
---|---|---|---|---|---|---|---|---|
派生发展的涡轴 | 约1 100 | 约0.276 | 约280 | 约4.0 | 约13 | 约1 550 | 3 000 | 中国 |
Ardiden 1H1 Ardiden 3C[ | 1 014~1 243 | 0.283~0.288 | 268~286 | 3.54~4.63 | 12.7~15 | 1 450~1 550 | 3 000 | 法国 |
CTS800-4[ | 1 014~1 243 | 0.283~0.288 | 268~286 | 3.54~4.63 | 12.7~15 | 1 450~1 550 | 3 000 | 美国 |
Table 8
Advanced performance of derived turbofan engine
发动机 | 起飞推力/ kgf | 起飞耗油率/ (kg·kgf-1·h-1) | 12 km、Ma=0.6巡航耗油率/ (kg·kgf-1·h-1) | 总压比 | 涡轮前温度/ K | 首翻期/ h | 推重比/ (kgf·kg-1) | 研制国家 |
---|---|---|---|---|---|---|---|---|
派生发展的涡扇 | 约850 | 约0.46 | 约0.69 | 约16 | 约1 550 | 约3 000 | 约3.7 | 中国 |
PW617F1-E[ | 784 | 0.52* | 0.74 | 12.4 | 1 320 | 3 500 | 4.5 | 加拿大 |
FJ44-1AP[ | 952 | 0.486* | 13.5 | 1 280 | 3 500 | 4.0 | 美国 | |
HF120[ | 929 | 0.48* | 0.714 | 24 | 1 480 | 5 000 | 4.2 | 美国和日本联合研制 |
Table 9
Advanced performance of derived vehicle gas turbine
发动机 | 功率/kW | 燃油消耗率/ (kg·kW-1·h-1) | 重量/kg | 输出转速/(r∙min-1) | 功重比/ (kW∙kg-1) | 涡轮进口 总温/K | 首翻期/h | 最大使用 高度/m | 研制国家 |
---|---|---|---|---|---|---|---|---|---|
派生发展的 车用燃机 | 约900 | 约0.32 | 约1 100 | 3 150 | 约0.90 | 约1 400 | 1 500 | 5 500 | 中国 |
AGT-1500[ | 780~1 119 | 0.28~0.34 | 1 120~1 200 | 3 000~3 150 | 0.82~0.98 | 1 330~1 466 | 1 000~1 500 | 5 500 | 美国 |
GTD-1250[ GTD-1500[ | 780~1 119 | 0.28~0.34 | 1 120~1 200 | 3 000~3 150 | 0.82~0.98 | 1 330~1 466 | 1 000~1 500 | 5 500 | 俄罗斯 |
1 | 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005. |
LIAN X C, WU H. Aeroengine principle[M]. Xi’an: Northwestern Polytechnical University Press, 2005 (in Chinese). | |
2 | EGBERT N, MCKAIN T. Common core development approach for Allison T406/AE family of turboshaft, turboprop, and turbofan engines[C]∥ Proceedings of the 30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994. |
3 | 吴大观. 关于先进核心机研制的几点意见[J]. 燃气涡轮试验与研究, 2003, 16(1): 5-6. |
WU D G. Comments on advanced core engine development[J]. Gas Turbine Experiment and Research, 2003, 16(1): 5-6 (in Chinese). | |
4 | 唐海龙, 朱之丽, 罗安阳, 等. 以已有核心机为基础进行发动机系列发展的初步研究[J]. 航空动力学报, 2004, 19(5): 636-639. |
TANG H L, ZHU Z L, LUO A Y, et al. A preliminary analysis of developing series of engines based on an existing core engine[J]. Journal of Aerospace Power, 2004, 19(5): 636-639 (in Chinese). | |
5 | 江和甫, 黄顺洲, 周人治. “系列核心机及派生发展” 的航空发动机发展思路[J]. 燃气涡轮试验与研究, 2004, 17(1): 1-5. |
JIANG H F, HUANG S Z, ZHOU R Z. Idea of aero-engine development by “core-engines in series and derivation”[J]. Gas Turbine Experiment and Research, 2004, 17(1): 1-5 (in Chinese). | |
6 | 黄顺洲, 王永明, 江和甫. 核心机及其派生发动机发展的方法研究[J]. 燃气涡轮试验与研究, 2005, 18(2): 1-5, 48. |
HUANG S Z, WANG Y M, JIANG H F. An investigation on core engine and its derived aero-engine development[J]. Gas Turbine Experiment and Research, 2005, 18(2): 1-5, 48 (in Chinese). | |
7 | 黄顺洲, 胡骏, 江和甫. 核心机及其派生发动机发展的方法[J]. 航空动力学报, 2006, 21(2): 241-247. |
HUANG S Z, HU J, JIANG H F. Investigation of core engine and derivative aero-engine development[J]. Journal of Aerospace Power, 2006, 21(2): 241-247 (in Chinese). | |
8 | 欧阳辉, 朱之丽, 俞伯良. 核心机派生涡扇发动机部件及整机匹配[J]. 航空动力学报, 2010, 25(9): 2057-2063. |
OUYANG H, ZHU Z L, YU B L. Components and engine matching of core-derived turbofan[J]. Journal of Aerospace Power, 2010, 25(9): 2057-2063 (in Chinese). | |
9 | 欧阳辉, 朱之丽. 核心机派生匹配性能模型及其应用[J]. 燃气涡轮试验与研究, 2010, 23(2): 10-14. |
OUYANG H, ZHU Z L. Performance model and application of core-derivative engine’s matching[J]. Gas Turbine Experiment and Research, 2010, 23(2): 10-14 (in Chinese). | |
10 | Propulsion Directorate Air Force Research Laboratory. Versatile core focus area[C]∥ VAATE PRDAI Pre-Proposal Conference, 2002. |
11 | AIAA Air Breathing Propulsion Technical Committee. The Versatile Affordable Advanced Turbine Engines (VAATE) initiative[R]. Reston: AIAA, 2006. |
12 | 中国航发湖南动力机械研究所. 中小型涡轴与涡扇发动机通用核心机设计关键技术合作研究[R]. 株洲:中国航发湖南动力机械研究所,2005. |
ACEE Hunan Aviation Powerplant Research Institute. Cooperative research on key technology of design of versatile core engine of small-medium turboshaft and turbofan engine[R]. Zhuzhou: ACEE Hunan Aviation Powerplant Research Institute, 2005 (in Chinese). | |
13 | 尹泽勇, 曾源江, 石建成, 等. 涡轴(涡桨)/涡扇(涡喷)发动机通用核心机技术[J]. 航空动力学报, 2008, 23(11): 2088-2094. |
YIN Z Y, ZENG Y J, SHI J C, et al. Versatile core engine technology for turboshaft(turboprop)/turbofan(turbojet) engines[J]. Journal of Aerospace Power, 2008, 23(11): 2088-2094 (in Chinese). | |
14 | 付超, 邹正平, 刘火星, 等. 通用核心机涡轮气动设计准则[J]. 推进技术, 2011, 32(2): 165-174. |
FU C, ZOU Z P, LIU H X, et al. Turbine aerodynamic design criteria of versatile core[J]. Journal of Propulsion Technology, 2011, 32(2): 165-174 (in Chinese). | |
15 | 刘宝龙, 洪杰. 通用核心机转子系统结构设计技术[C]∥ 第9届全国转子动力学学术讨论会论文集, 2010: 58-62. |
LIU B L, HONG J. Structural design technology of the versatile core rotor system[C]∥ Proceedings of the 9th National Academic Conference on Rotordynamics, 2010: 58-62 (in Chinese). | |
16 | 张少锋, 陈玉春, 李夏鑫, 等. 中小型核心机派生发动机设计研究[J]. 航空工程进展, 2019, 10(6): 826-835. |
ZHANG S F, CHEN Y C, LI X X, et al. Research on design of medium-small core-derived engine[J]. Advances in Aeronautical Science and Engineering, 2019, 10(6): 826-835 (in Chinese). | |
17 | 尹泽勇, 米栋. 航空发动机多学科设计优化[M]. 北京: 北京航空航天大学出版社, 2015. |
YIN Z Y, MI D. Multidisciplinary design optimization of aero-engine[M]. Beijing: Beihang University Press, 2015 (in Chinese). | |
18 | SANDS J S. Robust design methodology for common core gas turbine engines[D]. Atlanta: Georgia Institute of Technology, 2015. |
19 | 尹泽勇, 米栋. 航空动力系统整机多学科设计优化[M]. 北京: 科学出版社, 2022. |
YIN Z Y, MI D. Multidisciplinary design optimization of aircraft power system [M]. Beijing: Science Press, 2022 (in Chinese). | |
20 | 中国航空工业发展研究中心. 通用航空发动机市场研究及发展建议[R]. 北京: 中国航空工业发展研究中心, 2016. |
Aviation Industry Development Research Center of China. General aviation engine market research and development suggestions[R]. Beijing: Aviation Industry Development Research Center of China, 2016 (in Chinese). | |
21 | Group UK Limited Jane. Jane’s aero-engines 2021-2022[M]. Norfolk: IHSpress, 2021. |
22 | 任继文, 高锦昌, 吴建全, 等. 俄罗斯坦克装甲车辆动力探析[J]. 车用发动机, 2004(4): 1-4, 42. |
REN J W, GAO J C, WU J Q, et al. Investigation on power of Russia tank and armored vehicle[J]. Vehicle Engine, 2004(4): 1-4, 42 (in Chinese). | |
23 | 张然治, 任继文. 国外坦克装甲车辆发动机装备现状技术水平分析和发展趋势研究[J]. 车用发动机, 1998(4): 1-11. |
ZHANG R Z, REN J W. Present status, technology analysis and development trend on power equipment of abroad tanks and armoured vehicles[J]. Vehicle Engine, 1998(4): 1-11 (in Chinese). |
[1] | Weina HUANG, Fangjuan LI, Hongbin QI. Preliminary investigation and thoughts on aero-engine digital engineering development [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693-529693. |
[2] | Ruixian MA, Xin WANG, Kaiming WANG, Bin LI, Mingfu LIAO, Siji WANG. Rubbing experimental study on labyrinth and rubber⁃coated case for aero⁃engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628350-628350. |
[3] | Yuan XIAO, Kun FENG, Minghui HU, Zhinong JIANG. Extraction method for unsteady vibration components of aero-engine rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228158-228158. |
[4] | Yingjiao HU, Feng XU, Zhijun YANG. Overview of aero-engine ice testing capability [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729449-729449. |
[5] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[6] | Miaodong ZHAO, Dianyin HU, Jianxing MAO, Haihe SUN, Shiyong QIN, Yuanxing GU, Rongqiao WANG, Tengyue TIAN, Lin YAN, Zhixing XIAO. Simulating specimen for low cycle fatigue of aero-engine disc: Design and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228320-228320. |
[7] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
[8] | Pei PENG, Yongping ZHAO, Yuwei WANG. New method for automatic and rapid mining of aero-engine operating patterns [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327659-327659. |
[9] | Wanli ZHAO, Yingqing GUO, Kejie XU, Cansen WANG, Haojie YING, Xinxin TAO. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27519-027519. |
[10] | ZHANG Shuo, LIU Zhiwen. Structured Bayesian sparse representation of aero-engine bearing failures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625056-625056. |
[11] | ZHANG Zhongqiang, ZHANG Xin, WANG Jiaxu, LIU Zhiwen. Reweighted kurtogram for aero-engine fault diagnosis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625445-625445. |
[12] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
[13] | DU Jianjian, PAN Xiande, LIU Tianyi. Indirect measurement method for axial load of aero-engine angular contact ball bearing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625457-625457. |
[14] | LIU Jiaqi, FENG Yunwen, LU Cheng, XUE Xiaofeng, PAN Weihuang. Safety analysis of aero-engine operation based on intelligent neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625375-625375. |
[15] | LI Dingjun, YANG Liuyu, SUN Fan, JIANG Peng, CHEN Yiwen, WANG Tiejun. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526184-526184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341