1 |
吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10.
|
|
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese).
|
2 |
邵扬杰, 刘莉, 曹潇, 等. 倾转旋翼无人机发展现状及关键技术概述[J]. 战术导弹技术, 2022(1): 12-20.
|
|
SHAO Y J, LIU L, CAO X, et al. Research status and key technologies of tilt-rotor UAVs[J]. Tactical Missile Technology, 2022(1): 12-20 (in Chinese).
|
3 |
MARANO A D, POLITO T, GUIDA M, et al. Tiltrotor acoustic data acquisition and analysis[J]. Aerotecnica Missili & Spazio, 2021, 100(2): 111-122.
|
4 |
袁明川, 李尚斌, 江露生, 等. 悬停状态倾转旋翼噪声试验及数值计算[J]. 航空动力学报, 2021, 36(3): 520-529.
|
|
YUAN M C, LI S B, JIANG L S, et al. Acoustic test and numerical analysis of tilt rotor in hover[J]. Journal of Aerospace Power, 2021, 36(3): 520-529 (in Chinese).
|
5 |
MILJKOVIĆ D. Methods for attenuation of unmanned aerial vehicle noise[C]∥2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Piscataway: IEEE Press, 2018: 914-919.
|
6 |
JAMES S W, KISSINGER T, WEBER S, et al. Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 1. Measurement of strain[J]. Smart Material Structures, 2022, 31(7): 075014.
|
7 |
李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报, 2022, 42(2): 1-10.
|
|
LI W Z, CAO Y Q, HE Z P. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials, 2022, 42(2): 1-10 (in Chinese).
|
8 |
MA J C, LU Y, SU T Y, et al. Experimental research of active vibration and noise control of electrically controlled rotor[J]. Chinese Journal of Aeronautics, 2021, 34(11): 106-118.
|
9 |
VOUROS S, POLYZOS N D, GOULOS I, et al. Impact of optimized variable rotor speed and active blade twist control on helicopter blade–vortex interaction noise and environmental impact[J]. Journal of Fluids and Structures, 2021, 104: 103285.
|
10 |
SUN Y, XU G H, SHI Y J. Parametric effect of blade surface blowing on the reduction of rotor blade–vortex interaction noise[J]. Journal of Aerospace Engineering, 2022, 35(1): 04021110.
|
11 |
PATEL T K, LILLEY A J, SHEN W Q, et al. Fundamental investigation using active plasma control to reduce blade–vortex interaction noise[J]. International Journal of Aeroacoustics, 2021, 20(8): 870-900.
|
12 |
吴希明. 我国直升机外部噪声控制技术发展思路研究[J]. 直升机技术, 2014(3): 1-6.
|
|
WU X M. Research on the development path of the helicopter external noise control technology in China[J]. Helicopter Technique, 2014(3): 1-6 (in Chinese).
|
13 |
DIETERICH O, ENENKL B, ROTH D. Trailing edge flaps for active rotor control-aeroelastic characteristics of the ADASYS rotor system[C]∥American Helicopter Society 62nd Annual Forum. West Palm Beach: AHS, 2006.
|
14 |
HAMMOND C E. Higher harmonic control: A historical perspective[J]. Journal of the American Helicopter Society, 2021, 66(2): 1-14.
|
15 |
COLELLA M M, BERNADINI G, GENNARETTI M. Tiltrotor wing-root vibratory loads reduction through higher harmonic control actuation[J]. Journal of Aircraft, 2012, 49(6): 1813-1820.
|
16 |
BETZINA M, NGUYEN K. Blade-pitch control for quieting tilt-rotor aircraft: 20110016662[R]. Washignton, D.C.: NASA, 2004.
|
17 |
陈丝雨, 招启军, 倪同兵, 等. 基于HHC方法的旋翼噪声抑制机理及参数影响[J]. 航空学报, 2017, 38(10): 121000.
|
|
CHEN S Y, ZHAO Q J, NI T B, et al. Rotor noise reduction mechanism and parameter analysis of HHC method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121000 (in Chinese).
|
18 |
GOPALAN G, SCHMITZ F H. Helicopter thickness noise reduction possibilities through active on-blade acoustic control[J]. Journal of Aircraft, 2010, 47(1): 41-52.
|
19 |
贺祥, 史勇杰, 徐国华. 基于声压相消的旋翼厚度噪声控制机理[J]. 空气动力学学报, 2019, 37(6): 893-900.
|
|
HE X, SHI Y J, XU G H. Control mechanism of the thickness noise based on sound pressure cancellation[J]. Acta Aerodynamica Sinica, 2019, 37(6): 893-900 (in Chinese).
|
20 |
XIA R Z, SHI Y J, LI T, et al. Numerical study of the rotor thickness noise reduction based on the concept of sound field cancellation[J]. Chinese Journal of Aeronautics, 2022, 35(3): 214-233.
|
21 |
MA J C, LU Y, QIN Y F, et al. Tilt-rotor aircraft fuselage wall aeroacoustics radiation suppression using Higher harmonic control[J]. Applied Acoustics, 2022, 188: 108548.
|
22 |
FARASSAT F, SUCCI G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations[J]. Journal of Sound and Vibration, 1980, 71(3): 399-419.
|
23 |
池骋, 陈仁良. 旋翼转速变化对直升机需用功率、配平、振动及噪声的影响分析[J]. 南京航空航天大学学报, 2018, 50(5): 629-639.
|
|
CHI C, CHEN R L. Influence of rotor speed variation on required power, trim, vibration and noise of helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(5): 629-639 (in Chinese).
|