[1] LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2):447-456. [2] SIROMANI D. Crashworthy design and analysis of aircraft structures[D]. Philadelphia:Drexel University, 2013. [3] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese). [4] 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报, 2020, 41(4):293-323. LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures[J]. Chinese Journal of Solid Mechanics, 2020, 41(4):293-323(in Chinese). [5] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(in Chinese). [6] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123. [7] MOSTAFA R. Virtual test & simulation[C]//Engineering, Operations & Technology, 2013:1-24. [8] PERFETTO D, DE LUCA A, LAMANNA G, et al. Drop test simulation and validation of a full composite fuselage section of a regional aircraft[J]. Procedia Structural Integrity, 2018, 12:380-391. [9] DI PALMA L, DI CAPRIO F, CHIARIELLO A, et al. Vertical drop test of composite fuselage section of a regional aircraft[J]. AIAA Journal, 2020, 58(1):474-487. [10] HASHEMI S R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(5):265-280. [11] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218. [12] FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing:NASA TM-89025[R]. Washington,D.C.:NASA, 1986. [13] WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells:NASA TM-85706[R]. Washington,D.C.:NASA, 1983. [14] FASANELL E L, JACKSON K E, JONES Y T, et al. Crash simulation of a Boeing 737 fuselage section vertical drop test[C]//Proceedings of the Third KRASH User's Conference, 2001. [15] FASANELL E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank:23681-0001[R]. U.S. Army Research Laboratory, Vehicle Technology Center, Langley Research Center, 2002. [16] KAREN E J, EDWIN L F. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage[C]//Proceedings of the Third Triennial Aircraft Fire and Cabin Safety Conference, 2001:22-25. [17] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins[R]. Warrendale:SAE International, 2002. [18] JACKSON K E. Finite element simulations of two vertical drop tests of F-28 Fuselage sections:NASA/TM-2018-219807[R].Washington,D.C.:NASA, 2018. [19] JACKSON K E, FASANELLA E L. Development of an LS-DYNA model of an ATR42-300 aircraft for crash simulation[C]//2003 SAE World Aviation Congress, 2003. [20] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R].Warrendale:SAE International, 2003. [21] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[R].Warrendale:SAE International, 2002. [22] REN Y R, XIANG J W, MENG S H, et al. Crashworthiness of civil aircraft subject to soft soil and concrete impact surface[J]. Procedia Engineering, 2014, 80:193-201. [23] 任毅如, 向锦武, 郑建强, 等. 典型民机机身段水上冲击数值模拟方法及其耐撞性研究[J]. 工程力学, 2016, 33(5):241-248. REN Y R, XIANG J W, ZHENG J Q, et al. Research on the numerical method and crashworthiness of typical civil aircraft fuselage for water impact[J]. Engineering Mechanics, 2016, 33(5):241-248(in Chinese). [24] 冯振宇, 张晓敏, 牟浩蕾, 等. 不同冲击条件对机身结构适坠性的影响[J]. 机械科学与技术, 2013, 32(3):353-357. FENG Z Y, ZHANG X M, MOU H L, et al. Influences of different impact conditions on aircraft fuselage crashworthiness[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(3):353-357(in Chinese). [25] 彭亮. 基于乘员生存性的机身结构适坠性设计与评价方法研究[D]. 西安:西北工业大学, 2018. PENG L. Research on design and evaluation method of airframe structural crashworthiness based on occupants survivability[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese). [26] 中国民用航空规章:第25部-运输类飞机适航标准:CCAR-25[S]. 北京:中国民用航空局, 2011. China Civil Aviation Regulation:25-airworthiness standard of transport aircraft:CCAR-25[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese). [27] 白春玉, 刘小川, 惠旭龙, 等. 民机适坠性研究中的垂向坠撞速度问题探讨[J]. 航空科学技术, 2020, 31(9):11-17. BAI C Y, LIU X C, XI X L, et al. Discussion on the problem of vertical crash velocity in the study of the crashworthiness of civil aircraft[J]. Aeronautical Science & Technology, 2020, 31(9):11-17(in Chinese). [28] Society of Automotive Engineers. Recommended practice:Instrumentation for impact test-Part 1, Electronic instrumentation:SAE J211/1[S]. Warrendale:SAE International,2007. |