Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (6): 629613-629613.doi: 10.7527/S1000-6893.2023.29613
• Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft • Previous Articles Next Articles
Junfu LI1,2, Qing CHEN1,3,4, Wei WANG2, Zhonghua HAN1,3,4(), Yuting TAN2, Yulin DING1,3,4, Lu XIE2, Jianling QIAO1,3,4, Ke SONG1,3,4, Junqiang AI2
Received:
2023-09-19
Revised:
2023-10-07
Accepted:
2023-10-24
Online:
2024-03-25
Published:
2023-11-01
Contact:
Zhonghua HAN
E-mail:hanzh@nwpu.edu.cn
Supported by:
CLC Number:
Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613.
1 | CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power, 2004, 20(1): 59-68. |
2 | PEIREN G. Tu-144 supersonic transport[J]. Civil Aircraft Design and Research, 2015(3): 99-102. |
3 | BAIZE, DANIEL G. The 1995 NASA High-Speed Research Program Sonic Boom Workshop: NASA-CP-3335-Vol-1[R]. Washington, D.C.: NASA, 1996. |
4 | BOEING COMMERCIAL AIRPLANES. High-speed civil transport study. Summary: NASA-CR-4233[R]. Washington, D.C.: NASA, 1989. |
5 | DOUGLAS AIRCRAFT COMPANY. Study of high-speed civil transports: NASA CR-1989-4235[R]. Washington, D.C.: NASA, 1989. |
6 | GREEN P K, PACULL M, REIMERS H D. European 2nd Generation Supersonic Commercial Transport Aircraft[C]∥Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996:ICAS-96-4.4.1. |
7 | YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high-speed commercial transport: NAL SP-34[R]. Tokyo: National Aerospace Laboratory, 1997. |
8 | PLOTKIN K, MAGLIERI D. Sonic boom research: history and future: AIAA-2003-3575[R]. Reston: AIAA, 2003. |
9 | SAKATA K. Supersonic Experimental Airplane (NEXST) for Next Generation SST Technology-Development and flight test plan for the Unmanned Scaled Supersonic Glider: AIAA-2002-0527[R]. Reston: AIAA, 2002. |
10 | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3): AIAA-2010-5114[R]. Reston: AIAA, 2010. |
11 | LIEBHARDT B, LÜTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner-A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥Proceedings of the AIAA AVIATION 2020 FORUM. Reston: AIAA, 2020: AIAA2020-2731. |
12 | buonanno Michael. Conceptual design of a quiet supersonic technology airliner[R/OL]. [2023-10-31]. . |
13 | RICHWINE D, BRANDON J. Quiet SuperSonic technology (QueSST) aircraft preliminary design status and low-boom flight demonstration (LBFD) project update[R]. Reston: AIAA, 2018 |
14 | Nemec M, Aftosmis M, Spurlock W. Minimizing sonic boom through simulation-based design: the X-59 airplane[R]. Washington, D.C.: NASA, 2020. |
15 | 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022: 7-8. |
HAN Z H, QIAN Z S, QIAO J L. Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022: 7-8. (in Chinese). | |
16 | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). | |
17 | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
18 | Robinson L D. A Numerical Model for Sonic Boom Propagation through an Inhomogeneous, Windy Atmoshpere: NASA CP-1372 [R]. Washington D.C.: NASA, 1992. |
19 | WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 301-348. |
20 | WHITHAM G B. The behaviour of supersonic flow past a body of revolution, far from the axis[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1064): 89-109. |
21 | WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2): 164-194. |
22 | Ding Y L, Han Z H, Qiao J L, et al. Fast method and an integrated code for sonic boom prediction of supersonic commercial aircraft[C]∥32nd Congress of the International Council of the Aeronautical Sciences. Shanghai: International Council of the Aeronautical Sciences, 2021:1-12. |
23 | 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. |
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). | |
24 | STEVENS S S. Perceived level of noise by mark Ⅶ and decibels (E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601. |
25 | JONES L B. Lower bounds for sonic Bangs[J]. The Journal of the Royal Aeronautical Society, 1961, 65(606): 433-436. |
26 | JONES L B. Lower bounds for sonic Bangs in the far field[J]. Aeronautical Quarterly, 1967, 18(1): 1-21. |
27 | JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17. |
28 | SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653. |
29 | SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 686-694. |
30 | GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal, 1969, 7(8): 1542-1545. |
31 | GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093. |
32 | DARDEN C. Sonic-boom minimization with nose-bluntness relaxation: NASA TP-1348[R]. Washington D.C.: NASA, 1979 |
33 | DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal, 2023, 61(7): 2840-2853. |
34 | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 20-46. |
DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 20-46 (in Chinese). | |
35 | HAN Z H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences. Daejeon: ICAS, 2016: ICAS 2016-0281. |
36 | HAN Z H, GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9): 1885-1896. |
37 | HAN Z H, GÖRTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1): 177-189. |
38 | HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12): 4330-4346. |
39 | PARK M. 1st AIAA sonic boom prediction workshop[EB/OL]. (2017-12-13)[2017-12-13]. . |
40 | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). |
[1] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[2] | Liu LIU, Xianhong XIANG, Yufei ZHANG, Haixin CHEN, Chuang WEI, Jian ZHU, Pu YANG. A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629630-629630. |
[3] | Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696. |
[4] | Xiang ZHAO, Zhixun XIA, Chuanbo FANG, Likun MA, Chaolong LI, Yifan DUAN. Theoretical analysis of performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126971-126971. |
[5] | Shijun SUN, Xiaolong LI, Yanming LIU, Jianhua WANG, Songtao WANG. Influence of wide-speed-range inflow on aerodynamic performance of supersonic through-flow fan cascade [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528523-528523. |
[6] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
[7] | Yiran GU, Jiangtao HUANG, Shusheng CHEN, Deyuan LIU, Zhenghong GAO. Sonic boom inversion technology based on inverse augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626258-626258). |
[8] | Yafei LU, Qingyang CHEN, Peng WANG, Bo WANG, Zheng GUO. Design and experiment of a small air-launched UAV [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528642-528642. |
[9] | Yongzhou LI, Di SUN, Renhua WANG, Kunyuan ZHANG. Design of inward turning inlet with controlled Mach number under non-uniform inflow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127857-127857. |
[10] | ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649. |
[11] | YUAN Jisen, SUN Jue, LI Lingyu, YU Shenghao, NIE Han, GAO Liangjie, HAN Zhonghua, QIAN Zhansen. Progress of supersonic aircraft laminar flow layout design and evaluation technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526316-526316. |
[12] | ZHOU Zhenyao, LYU Fei, ZHOU Bin, YANG Zhao. Verification method for natural laminar flow drag reduction and layout design of test section [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526751-526751. |
[13] | WANG Di, QIAN Zhansen, LENG Yan. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124916-124916. |
[14] | FAN Yuehua, DUAN Yee, ZHOU Naizhen, YANG Pan. Friction numerical calculation precision in high Mach number laminar flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625737-625737. |
[15] | JIA Hongyin, ZHANG Peihong, ZHAO Wei, ZHOU Guiyu, WU Xiaojun. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 623995-623995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341