Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (20): 228480-228480.doi: 10.7527/S1000-6893.2023.28480
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Xuhan ZHANG(), Yi CAO, Jingnan SUN, Shunzhi PAN
Received:
2023-01-09
Revised:
2023-04-11
Accepted:
2023-05-29
Online:
2023-10-25
Published:
2023-06-05
Contact:
Xuhan ZHANG
E-mail:zhangxuhan@comac.cc
Supported by:
CLC Number:
Xuhan ZHANG, Yi CAO, Jingnan SUN, Shunzhi PAN. Comparative study on weight analysis methods of cabin air parameters in civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228480-228480.
Table 2
Test results of objective parameters
参数类 | 参数 | B7 | B8 | A3 |
---|---|---|---|---|
压力 | 巡航座舱压力/kPa | 84.7 | 83.1 | 81.7 |
压力变化率(爬升)/(kPa·min-1) | 0.97 | 1.09 | 0.86 | |
压力变化率(下降)/(kPa·min-1) | 0.47 | 1.11 | 0.99 | |
温度 | 巡航舱内平均温度/℃ | 25.4 | 25.6 | 25.6 |
过道乘客头部温度/℃ | 26.2 | 25.1 | 24.9 | |
竖直温度均匀度/℃ | 1.4 | 1.4 | 0.8 | |
湿度 | 相对湿度最大值/% | 32 | 40 | 40 |
相对湿度最小值/% | 9 | 24 | 10 | |
呼吸区相对湿度/% | 22 | 32 | 33 | |
风速 | 风速最小值/(m·s-1) | 0.05 | 0.03 | 0.07 |
风速最大值/(m·s-1) | 0.40 | 0.46 | 0.44 | |
空气品质 | CO2平均浓度/‰ | 1.062 | 1.245 | 1.040 |
TVOC平均浓度/(μg·m-3) | 94.5 | 88.6 | 91.7 | |
PM2.5平均浓度/(μg·m-3) | 2.57 | 4.33 | 3.75 | |
O3平均浓度/(10-6‰) | 9 | 8 | 6 |
Table 7
Analysis results of entropy method
参数类 | 参数 | 信息熵值 | 信息效用值 | 权重/% | 类权重/% |
---|---|---|---|---|---|
温度 | 竖直温度均匀度 | 0.195 | 0.805 | 10.456 | 23.9 |
过道乘客头部温度 | 0.356 | 0.644 | 8.372 | ||
巡航舱内平均温度 | 0.632 | 0.368 | 4.782 | ||
空气品质 | O3平均浓度 | 0.214 | 0.786 | 10.206 | 20.5 |
PM2.5平均浓度 | 0.51 | 0.49 | 6.371 | ||
TVOC平均浓度 | 0.569 | 0.431 | 5.603 | ||
CO2平均浓度 | 0.63 | 0.37 | 4.813 | ||
湿度 | 相对湿度最小值 | 0.219 | 0.781 | 10.149 | 19.9 |
呼吸区相对湿度 | 0.633 | 0.367 | 4.763 | ||
相对湿度最大值 | 0.635 | 0.365 | 4.745 | ||
压力 | 压力变化率(下降) | 0.401 | 0.599 | 7.777 | 18.7 |
压力变化率(爬升) | 0.585 | 0.415 | 5.389 | ||
巡航座舱压力 | 0.587 | 0.413 | 5.362 | ||
风速 | 风速最大值 | 0.559 | 0.441 | 5.724 | 17.0 |
风速最小值 | 0.578 | 0.422 | 5.488 |
Table 8
Dimensionless results of objective data
参数类 | 参数 | 处理方式 | B7 | B8 | A3 |
---|---|---|---|---|---|
压力 | 巡航座舱压力 | 逆向化 | 0 | 0.53 | 1 |
压力变化率(爬升) | 逆向化 | 0.51 | 0 | 1 | |
压力变化率(下降) | 逆向化 | 1 | 0 | 0.19 | |
温度 | 巡航舱内平均温度 | 标准化 | 0 | 0.90 | 1 |
过道乘客头部温度 | 标准化 | 1 | 0.15 | 0 | |
竖直温度均匀度 | 逆向化 | 0.06 | 0 | 1 | |
湿度 | 相对湿度最大值 | 正向化 | 0 | 0.96 | 1 |
相对湿度最小值 | 正向化 | 0 | 1 | 0.07 | |
呼吸区相对湿度 | 正向化 | 0 | 0.91 | 1 | |
风速 | 风速最小值 | 逆向化 | 0.46 | 1 | 0 |
风速最大值 | 逆向化 | 1 | 0 | 0.42 | |
空气品质 | CO2平均浓度 | 逆向化 | 0.89 | 0 | 1 |
TVOC平均浓度 | 逆向化 | 0 | 1 | 0.46 | |
PM2.5平均浓度 | 逆向化 | 1 | 0 | 0.33 | |
O3平均浓度 | 逆向化 | 0 | 1 | 0.07 |
Table 9
Analysis results of CRITIC weight method
参数类 | 参数 | 指标变异性 | 指标冲突性 | 信息量 | 权重/% | 类权重/% |
---|---|---|---|---|---|---|
风速 | 风速最大值 | 0.502 | 16.439 | 8.258 | 7.078 | 20.86 |
风速最小值 | 0.501 | 15.956 | 7.987 | 6.846 | ||
空气品质 | PM2.5平均浓度 | 0.51 | 16.612 | 8.467 | 7.257 | 20.42 |
O3平均浓度 | 0.559 | 14.745 | 8.242 | 7.064 | ||
CO2平均浓度 | 0.55 | 14.894 | 8.185 | 7.015 | ||
TVOC平均浓度 | 0.5 | 13.823 | 6.917 | 5.929 | ||
温度 | 过道乘客头部温度 | 0.539 | 17.192 | 9.264 | 7.94 | 20.29 |
竖直温度均匀度 | 0.561 | 13.121 | 7.366 | 6.313 | ||
巡航舱内平均温度 | 0.551 | 12.85 | 7.08 | 6.069 | ||
湿度 | 相对湿度最小值 | 0.559 | 14.746 | 8.244 | 7.066 | 19.36 |
相对湿度最大值 | 0.565 | 12.896 | 7.284 | 6.243 | ||
呼吸区相对湿度 | 0.553 | 12.856 | 7.104 | 6.089 | ||
压力 | 压力变化率(下降) | 0.531 | 16.84 | 8.942 | 7.664 | 19.07 |
压力变化率(爬升) | 0.5 | 13.974 | 6.988 | 5.989 | ||
巡航座舱压力 | 0.5 | 12.682 | 6.345 | 5.438 |
1 | 朱春玲. 飞行器环境控制与安全救生[M]. 北京: 北京航空航天大学出版社, 2006: 35-45. |
ZHU C L. Aircraft environmental control and safety lifesaving[M]. Beijing: Beihang University Press, 2006: 35-45 (in Chinese). | |
2 | ASHRAE. Air quality within commercial aircraft: ANSI/A Standard 161-2013 [S]. 2013: 2-7. |
3 | ASHRAE. Thermal environmental conditions for human occupancy: ANSI/A Standard 55-2013 [S]. 2013: 2-8. |
4 | AECMA. Aerospace series-aircraft internal air quality standards, criteria and determination methods: PrEN 4618-2013 [S]. 2013: 4-9. |
5 | 彼得·温克,克劳斯·布劳尔.飞机客舱舒适性设计[M].党铁红,译.上海: 上海交通大学出版社, 2013: 6-11. |
VINK P, BRAUER K. Aircraft interior comfort and design[M]. DANG T H, translated. Shanghai: Shanghai Jiao Tong University Press, 2013: 6-11 (in Chinese). | |
6 | ASHRAE. F 09.Thermal comfort[M]∥ASHRAE handbook:fundamentals (SI). Atlanta: ASHRAE Handbook Press, 2009: 1-20. |
7 | RANKIN W L, SPACE D R, NAGDA N L. Passenger comfort and the effect of air quality [C]∥Air Quality and Comfort in Airliner Cabins. 2000: 269-289. |
8 | 袁领双, 庞丽萍, 王浚. 大型客机座舱舒适性发展分析[J]. 航空制造技术, 2011, 54(13): 64-67. |
YUAN L S, PANG L P, WANG J. Development of cabin comfortability for large airliner[J]. Aeronautical Manufacturing Technology, 2011, 54(13): 64-67 (in Chinese). | |
9 | 薛会琴. 多属性决策中指标权重确定方法的研究[D]. 兰州: 西北师范大学, 2008: 6-7. |
XUE H Q. The research on the methods of index’s weight to be determined in the multiple attribute decision-making[D]. Lanzhou: Northwest Normal University, 2008: 6-7 (in Chinese). | |
10 | 王宗军. 多目标权系数赋值方法及其选择策略[J]. 系统工程与电子技术, 1993, 15(6): 35-41. |
WANG Z J. Multiobjective weights assigning methods and their choice strategies[J]. Systems Engineering and Electronics, 1993, 15(6): 35-41 (in Chinese). | |
11 | 李桥兴. 多属性决策中指标权重确定的理论研究与应用[D]. 南宁: 广西大学, 2004: 1-17. |
LI Q X. The theoretical rearch and application of index’s weight to be determined in the multiple attribute decision making[D]. Nanning: Guangxi University, 2004: 1-17 (in Chinese). | |
12 | 梁乐谦. 几种多目标决策权重估计方法的比较与研究[D]. 沈阳: 沈阳工业大学, 1999: 12-17. |
LIANG L Q. Comparison and research of several weights estimation methods for multi-objective decision-making[D].Shenyang: Shenyang University of Technology, 1999: 12-17 (in Chinese). | |
13 | 王宗军, 冯珊. 社会经济系统仿真方案的多层次Fuzzy综合评价[J]. 华中理工大学学报, 1993, 21(3): 12-18. |
WANG Z J, FENG S. The multilayer overall fuzzy evaluation of different simulating schemes for the socio-economic system[J]. Journal of Huazhong University of Science and Technology, 1993, 21(3): 12-18 (in Chinese). | |
14 | 王莲芬,许树柏. 层次分析法引论[M]. 北京: 中国人民大学出版社, 1990: 2-5. |
WANG L F, XU S B. Introduction to analytic hierarchy process[M]. Beijing: China Renmin University Press, 1990: 2-5 (in Chinese). | |
15 | 王文军. 飞机驾驶舱人机工效设计与综合评估关键技术[D]. 西安: 西北工业大学, 2015: 82-83. |
WANG W J. Key technologies of aircraft cockpit’s ergonomic design and comprehensive evaluation[D]. Xi’an: Northwestern Polytechnical University, 2015: 82-83 (in Chinese). | |
16 | 张玉, 魏华波. 基于CRITIC的多属性决策组合赋权方法[J]. 统计与决策, 2012(16): 75-77. |
ZHANG Y, WEI H B. Weighting method of multi-attribute decision combination based on CRITIC[J]. Statistics & Decision, 2012(16): 75-77 (in Chinese). | |
17 | 何思俊, 支锦亦. 基于AHP-独立性权数法的列车旅客界面设计评价[J]. 西南交通大学学报, 2021, 56(4): 897-904. |
HE S J, ZHI J Y. Evaluation of train passenger interface design based on analytic hierarchy process with independent weight method[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 897-904 (in Chinese). | |
18 | 宁献文, 李运泽, 王浚. 旅客机座舱综合环境质量评价模型[J]. 北京航空航天大学学报, 2006, 32(2): 158-162. |
NING X W, LI Y Z, WANG J. Comprehensive evaluation model for integrative cabin environment quality of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(2): 158-162 (in Chinese). | |
19 | 孔云志. 飞机驾驶舱舒适性评价方法研究[D]. 南京: 南京航空航天大学, 2017: 43-47. |
KONG Y Z. Research on evaluation method of aircraft cockpit comfort[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 43-47 (in Chinese). | |
20 | 刘丹. 乘用车乘坐舒适性主客观评价相关性[D]. 西安: 长安大学, 2018: 9-18. |
LIU D. Study on the correlation between subjective and objective evaluations for ride comfort of passenger vehicles[D]. Xi’an: Chang’an University, 2018: 9-18 (in Chinese). | |
21 | 丁铁成, 林建辉, 杨岗, 等. 虚拟轨道列车综合舒适性评价研究[J]. 机车电传动, 2021(6): 18-24. |
DING T C, LIN J H, YANG G, et al. Research on comprehensive comfort evaluation of virtual rail train[J]. Electric Drive for Locomotives, 2021(6): 18-24 (in Chinese). | |
22 | 崔建国, 林泽力, 吕瑞, 等. 基于模糊灰色聚类和组合赋权法的飞机健康状态综合评估方法[J]. 航空学报, 2014, 35(3): 764-772. |
CUI J G, LIN Z L, LV R, et al. Comprehensive assessment method of aircraft health status based on fuzzy gray clustering and combination weighting[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 764-772 (in Chinese). | |
23 | ZHANG X H, WU C Y, WANG G W, et al. Establishment methodology of comfort parameters series for civil aircraft cabin[C]∥International Conference on Man-Machine-Environment System Engineering. Singapore: Springer, Singapore, 2020: 741-749. |
[1] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
[2] | Xiaochuan LIU, Xulong XI, Xinyue ZHANG, Chunyu BAI, Yabin YAN, Xiaocheng LI, Rangke MU. Full⁃scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664-529664. |
[3] | Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677. |
[4] | Meng LI, Xingyi CHEN, Jichang CHEN, Bin WU, Mingbo TONG. Numerical analysis of civil aircraft ditching performance in wave condition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 28-43. |
[5] | Chunpeng LI, Zhansen QIAN, Xiasheng SUN. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127335-127335. |
[6] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
[7] | Yunwen FENG, Xinyi LIN, Xiaofeng XUE, Xiang YANG, Jiaqi LIU. Design of civil aircraft explosion-proof structure for high reliable one-way blasting [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 228297-228297. |
[8] | Qing GUO, Deming GUAN. Human factor reliability prediction model for civil aircraft maintenance task analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228051-228051. |
[9] | Wenhao BI, Qiucen FAN, Delin LI, An ZHANG. Modeling approach for forward design of civil aircraft based on multiple perspectives [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227536-227536. |
[10] | Xiaochuan LIU, Xinyue ZHANG, Xulong XI, Yabin YAN, Juntai MA. Influence of structural repairs on crashworthiness of civil aircraft fuselage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227517-227517. |
[11] | Xiong HUANG, Shiru QU, Heng ZHANG, Xiantiao CHEN. Stall performance of high-lift configuration of large civil aircraft with slat de-icing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627077-627077. |
[12] | CEN Fei, LIU Zhitao, JIANG Yong, GUO Tianhao, ZHANG Lei, KONG Yinan. Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125582-125582. |
[13] | ZHANG Xinyue, XI Xulong, LIU Xiaochuan, BAI Chunyu. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526234-526234. |
[14] | WANG Yupeng, TIAN Wenpeng, SONG Pengfei, XIA Feng, FENG Jianmin. Research and verification of comprehensive acceleration technology for civil aircraft full-scale fatigue test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 224919-224919. |
[15] | ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341