Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (14): 429420-429420.doi: 10.7527/S1000-6893.2023.29420
• Material Engineering and Mechanical Manufacturing • Previous Articles
Shibo WEI1,2, Hongji SHU1, Xiaoqiong ZHANG1(), Tingting ZHAO1, Tao WANG1,2, Zhihua WANG1, Qingxue HUANG1,2
Received:
2023-08-09
Revised:
2023-10-08
Accepted:
2023-11-13
Online:
2023-12-02
Published:
2023-11-22
Contact:
Xiaoqiong ZHANG
E-mail:zhangxiaoqiong@tyut.edu.cn
Supported by:
CLC Number:
Shibo WEI, Hongji SHU, Xiaoqiong ZHANG, Tingting ZHAO, Tao WANG, Zhihua WANG, Qingxue HUANG. High⁃velocity impact performance of thin⁃ply carbon fiber/ ultra⁃thin stainless⁃steel strips fiber metal laminates[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 429420-429420.
Table 5
Statistics on impact experimental results of three types of thin⁃ply CUSFML and CFRP laminates
A类CUSFML | B类CUSFML | C类CUSFML | CFRP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VI/ (m·s-1) | 状态 | VR/ (m·s-1) | VI/ (m·s-1) | 状态 | VR/ (m·s-1) | VI/ (m·s-1) | 状态 | VR/ (m·s-1) | VI/ (m·s-1) | 状态 | VR/ (m·s-1) |
45.76 | 回弹 | 46.88 | 回弹 | 46.90 | 回弹 | 46.38 | 临界穿透 | ||||
58.62 | 回弹 | 57.65 | 回弹 | 59.02 | 回弹 | 64.27 | 穿透 | 41.63 | |||
68.57 | 穿透 | 27.64 | 67.28 | 回弹 | 67.89 | 回弹 | 73.05 | 穿透 | 53.23 | ||
80.17 | 穿透 | 54.81 | 77.86 | 回弹 | 75.67 | 回弹 | 80.98 | 穿透 | 65.54 | ||
87.92 | 穿透 | 63.24 | 86.55 | 穿透 | 10.73 | 83.80 | 回弹 | 87.22 | 穿透 | 74.11 | |
94.72 | 穿透 | 77.04 | 95.28 | 穿透 | 40.94 | 92.03 | 回弹 | 94.51 | 穿透 | 81.70 | |
99.44 | 穿透 | 82.85 | 99.68 | 穿透 | 50.51 | 97.36 | 回弹 | 98.27 | 穿透 | 87.25 | |
104.6 | 穿透 | 87.14 | 104.3 | 穿透 | 59.24 | 104.9 | 穿透 | 46.62 | 104.4 | 穿透 | 95.61 |
109.8 | 穿透 | 62.23 | |||||||||
113.1 | 穿透 | 82.45 | |||||||||
118.5 | 穿透 | 78.64 |
Table 9
Degradation coefficients of basic property parameters of TU/SYT49S⁃200 unidirectional carbon fiber prepreg in various damage modes[34]
损伤模式 | 衰减系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
E11 | E22 | E33 | G12 | G13 | G23 | ν12 | ν13 | ν23 | |
纤维拉伸损伤 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
纤维压缩损伤 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
基体拉伸损伤 | 1 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 1 | 1 | 1 |
基体压缩损伤 | 1 | 0.40 | 0.40 | 0.40 | 0.40 | 1.57 | 1 | 1 | 1 |
面外剪切损伤 | 1 | 1 | 1 | 1 | 1 |
1 | CHAI G B, MANIKANDAN P. Low velocity impact response of fibre-metal laminates—A review[J]. Composite Structures, 2014, 107: 363-381. |
2 | 佟安时, 谢里阳, 白恩军, 等. 纤维金属层板的静力学性能测试与预测模型[J]. 航空学报, 2017, 38(11): 221193. |
TONG A S, XIE L Y, BAI E J, et al. Test and prediction model of statics property of fiber metal laminates[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 221193 (in Chinese). | |
3 | VLOT A, ALDERLIESTEN R C, HOOIJMEIJER P A, et al. Fibre metal laminates: A state of the art[J]. International Journal of Materials and Product Technology, 2002, 17(1-2): 79-98. |
4 | 陈勇, 廖高健, 任立海, 等. 玻璃纤维增强铝合金层板高速冲击损伤容限[J]. 航空学报, 2018, 39(7): 221733. |
CHEN Y, LIAO G J, REN L H, et al. Damage tolerance of GLARE laminates subjected to high-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 221733 (in Chinese). | |
5 | BANAT D, MANIA R J. Damage analysis of thin-walled GLARE members under axial compression-Numerical and experiment investigations[J]. Composite Structures, 2020, 241: 112102. |
6 | KHAN S H, SHARMA A P, KITEY R, et al. Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates[J]. International Journal of Impact Engineering, 2018, 119: 14-25. |
7 | HU C Z, SANG L, JIANG K, et al. Experimental and numerical characterization of flexural properties and failure behavior of CFRP/Al laminates[J]. Composite Structures, 2022, 281: 115036. |
8 | NAKATANI H, KOSAKA T, OSAKA K, et al. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 772-781. |
9 | 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究[J]. 航空学报, 2010, 31(9): 1781-1787. |
CHEN Y F, LI Y L, LIU J, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787 (in Chinese). | |
10 | LEE D W, PARK B J, PARK S Y, et al. Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings[J]. Composite Structures, 2018, 189: 61-69. |
11 | KÖTTER B, YAMADA K, KÖRBELIN J, et al. Steel foil reinforcement for high performance bearing strength inThin-Ply composites [J]. Composites Part C: Open Access, 2021, 4: 085-100. |
12 | PÄRNÄNEN T, KANERVA M, SARLIN E, et al. Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture[J]. Composite Structures, 2015, 119: 777-786. |
13 | LIU C, YANG G L, XIAO Y, et al. Experimental and numerical investigation on the impact resistance of fiber metal laminates[J]. Vibroengineering Procedia, 2021, 36: 78-82. |
14 | PATELM, PATELS, AHMADS. Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins[J]. International Journal of Impact Engineering, 2023, 178: 104609. |
15 | LU F, ZHONG Q P, CAO C X, et al. Galvanic corrosion and protection of GECM/LY12CZ couples under different atmospheric exposure conditions[J]. Acta Metallurgica Sinica (English Letters), 2003, 16(1): 41-45. |
16 | 吴国清, 潘英才, 张宗科, 等. 超轻纤维金属层合板的研究进展[J]. 航空制造技术, 2016, 59(S2): 133-136. |
WU G Q, PAN Y C, ZHANG Z K, et al. Research progress of ultra-light fiber metal laminates[J]. Aeronautical Manufacturing Technology, 2016, 59(S2): 133-136 (in Chinese). | |
17 | 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6): 525323. |
CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525323 (in Chinese). | |
18 | JAKUBCZAK P, BIENIAŚ J, DADEJ K. Experimental and numerical investigation into the impact resistance of aluminium carbon laminates[J]. Composite Structures, 2020, 244: 112319. |
19 | 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851. |
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: State-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526851 (in Chinese). | |
20 | SHARMA A P, VELMURUGAN R, SHANKAR K, et al. High-velocity impact response of titanium-based fiber metal laminates. Part I: Experimental investigations[J]. International Journal of Impact Engineering, 2021, 152: 103845. |
21 | SHARMA A P, KHAN S H. Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminum laminates[J]. Polymer Testing, 2018, 70: 320-347. |
22 | DECICCOD, TAHERIF. Performances of magnesium- and steel-based 3D fiber-metal laminates under various loading conditions[J]. Composite Structures, 2019, 229: 111390. |
23 | SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies[J]. Composite Structures, 2012, 94(8): 2585-2598. |
24 | KUBITA, TRZEPIECIŃSKI T, KICIŃSKI R, et al. Three-dimensional smooth particle hydrodynamics modeling and experimental analysis of the ballistic performance of steel-based FML targets[J]. Materials, 2022, 15(10): 3711. |
25 | 唐小军, 回天力, 王振清, 等. 碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究[J]. 应用数学和力学, 2016, 37(10): 1026-1038. |
TANG X J, HUI T L, WANG Z Q, et al. Numerical simulation of impact dynamic responses and interlayer failure of CFRMLs under thermal loads[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1026-1038 (in Chinese). | |
26 | PANG Y Z, YAN X J, WU L Z, et al. Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles[J]. Composite Structures, 2022, 280: 114848. |
27 | REN Z K, FAN W W, HOU J, et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials, 2019, 12(11): 1819-1831. |
28 | REYES VILLANUEVA G, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science and Technology, 2004, 64(1): 35-54. |
29 | KHORAMISHAD H, ALIKHANI H, DARIUSHI S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates[J]. Composite Structures, 2018, 201: 561-569. |
30 | 李应刚, 张雨, 朱凌, 等. 船用蜂窝金属夹芯板重复冲击实验研究[J]. 船舶力学, 2021, 25(5): 637-644. |
LI Y G, ZHANG Y, ZHU L, et al. Experimental study on the dynamic behaviours of honeycomb sandwich plates under repeated impacts[J]. Journal of Ship Mechanics, 2021, 25(5): 637-644 (in Chinese). | |
31 | SHIBUYA Y, ZHANG J W, SATO Y, et al. Evaluation of the mechanical properties and deformability of metal-based composite sheets made of thin stainless-steel sheets and carbon fiber reinforced plastics[J]. International Journal of Material Forming, 2022, 15(4): 47. |
32 | JAKUBCZAK P. The comparison of the veritable response to impact load of conventional and thin-ply types of fibre metal laminates[J]. Composite Structures, 2021, 257: 113151. |
33 | KONG D W, WANG D F, ZHANG X P. Study on the forming process and shear mechanical behavior of CFRP/Al self-piercing riveting employed 3D modeling[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237(8): 1771-1787. |
34 | ZHU Q, ZHANG C, CURIEL-SOSAJ L, et al. Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes[J]. Composite Structures, 2019, 214: 73-82. |
35 | ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures, 2008, 86(1-3): 194-210. |
36 | JAKUBCZAK P. The impact behaviour of hybrid titanium glass laminates—Experimental and numerical approach[J]. International Journal of Mechanical Sciences, 2019, 159: 58-73. |
37 | BIENIAS J, JAKUBCZAK P, DADEJ K. Low-velocity impact resistance of aluminium glass laminates—Experimental and numerical investigation[J]. Composite Structures, 2016, 152: 339-348. |
38 | ZHANG F K, LIN Y, WU J A, et al. Comparison of stacking sequence on the low-velocity impact failure mechanisms and energy dissipation characteristics of CFRP/Al hybrid laminates[J]. Polymer Composites, 2022, 43(8): 5544-5562. |
[1] | Xiaochuan LIU, Xulong XI, Xinyue ZHANG, Chunyu BAI, Yabin YAN, Xiaocheng LI, Rangke MU. Full⁃scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664-529664. |
[2] | ZHANG Xinyue, XI Xulong, LIU Xiaochuan, BAI Chunyu. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526234-526234. |
[3] | WANG Jiaming, LI Zhigang, LIANG Fangzheng, LIU Wanting, LIAO Jiu, CHEN Fangyu, LI Meng, SHAO Teli. Design, simulation and theoretical study on novel cored octagon honeycomb for helicopter crashworthiness [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225244-225244. |
[4] | XIE Jiang, SONG Shanshan, SONG Dongfang, FENG Zhenyu, MU Haolei, ZHANG Xuehan. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522395-522395. |
[5] | FENG Zhenyu, XIE Jiang, LI Henghui, CHENG Kun, MA Congyao, MOU Haolei. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522394-522394. |
[6] | MENG Weiying, XIE Liyang, LIU Jianzhong, BAI Xin, TONG Anshi. Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(5): 1536-1543. |
[7] | ZHOU Huazhi, WANG Zhijin. Analysis of energy absorption capability of M-type folded core sandwich structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 579-587. |
[8] | WANG Haibo, LIU Ruirui, SUN Yuxin, LIU Hua, YANG Jialing. Energy absorption characteristics of series nested circular ring system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 1839-1847. |
[9] | LIU Xiaochuan, ZHOU Sufeng, MA Junfeng, SUN Xiasheng, MU Rangke. Correlation Study of Crash Analysis and Test of Civil Airplane Sub-cabin Energy Absorption Structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(12): 2202-2210. |
[10] | Ren Yiru;Xiang Jinwu;Luo Zhangping;Zheng Jianqiang. Effect of Cabin-floor Oblique Strut on Crashworthiness of Typical Civil Aircraft Fuselage Section [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(2): 271-276. |
[11] | GONG Jun-jie;WANG Xin-wei. Numerical Simulation of Energy Absorption Capability of Composite Waved Beams [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(3): 298-302. |
[12] | CHEN Yong-gang;YI Xiao-su;XU Ya-hong;TANG Bang-ming;ZHANG Zi-long. Static Energy Absorption Characteristics of Carbon-Epoxy Tubes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(2): 246-249. |
[13] | LIU Rui-tong;WANG Xin-wei;JIA Shu-ping. EXPERIMENTAL STUDY ON ENERGY ABSORPTION OF CARBON-EPOXY WAVED BEAMS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(1): 59-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341